Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 15(1): 32, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303956

RESUMO

BACKGROUND: Microbial-driven solubilization of lignocellulosic material is a natural mechanism that is exploited in anaerobic digesters (ADs) to produce biogas and other valuable bioproducts. Glycoside hydrolases (GHs) are the main enzymes that bacterial and archaeal populations use to break down complex polysaccharides in these reactors. Methodologies for rapidly screening the physical presence and types of GHs can provide information about their functional activities as well as the taxonomical diversity within AD systems but are largely unavailable. Targeted proteomic methods could potentially be used to provide snapshots of the GHs expressed by microbial consortia in ADs, giving valuable insights into the functional lignocellulolytic degradation diversity of a community. Such observations would be essential to evaluate the hydrolytic performance of a reactor or potential issues with it. RESULTS: As a proof of concept, we performed an in silico selection and evaluation of groups of tryptic peptides from five important GH families derived from a dataset of 1401 metagenome-assembled genomes (MAGs) in anaerobic digesters. Following empirical rules of peptide-based targeted proteomics, we selected groups of shared peptides among proteins within a GH family while at the same time being unique compared to all other background proteins. In particular, we were able to identify a tractable unique set of peptides that were sufficient to monitor the range of GH families. While a few thousand peptides would be needed for comprehensive characterization of the main GH families, we found that at least 50% of the proteins in these families (such as the key families) could be tracked with only 200 peptides. The unique peptides selected for groups of GHs were found to be sufficient for distinguishing enzyme specificity or microbial taxonomy. These in silico results demonstrate the presence of specific unique GH peptides even in a highly diverse and complex microbiome and reveal the potential for development of targeted metaproteomic approaches in ADs or lignocellulolytic microbiomes. Such an approach could be valuable for estimating molecular-level enzymatic capabilities and responses of microbial communities to different substrates or conditions, which is a critical need in either building or utilizing constructed communities or defined cultures for bio-production. CONCLUSIONS: This in silico study demonstrates the peptide selection strategy for quantifying relevant groups of GH proteins in a complex anaerobic microbiome and encourages the development of targeted metaproteomic approaches in fermenters. The results revealed that targeted metaproteomics could be a feasible approach for the screening of cellulolytic enzyme capacities for a range of anaerobic microbiome fermenters and thus could assist in bioreactor evaluation and optimization.

2.
Front Fungal Biol ; 3: 808578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746234

RESUMO

The role of lipo-chitooligosaccharides (LCOs) as signaling molecules that mediate the establishment of symbiotic relationships between fungi and plants is being redefined. New evidence suggests that the production of these molecular signals may be more of a common trait in fungi than what was previously thought. LCOs affect different aspects of growth and development in fungi. For the ectomycorrhizal forming fungi, Laccaria bicolor, the production and effects of LCOs have always been studied with a symbiotic plant partner; however, there is still no scientific evidence describing the effects that these molecules have on this organism. Here, we explored the physiological, molecular, and metabolomic changes in L. bicolor when grown in the presence of exogenous sulfated and non-sulfated LCOs, as well as the chitooligomers, chitotetraose (CO4), and chitooctaose (CO8). Physiological data from 21 days post-induction showed reduced fungal growth in response to CO and LCO treatments compared to solvent controls. The underlying molecular changes were interrogated by proteomics, which revealed substantial alterations to biological processes related to growth and development. Moreover, metabolite data showed that LCOs and COs caused a downregulation of organic acids, sugars, and fatty acids. At the same time, exposure to LCOs resulted in the overproduction of lactic acid in L. bicolor. Altogether, these results suggest that these signals might be fungistatic compounds and contribute to current research efforts investigating the emerging impacts of these molecules on fungal growth and development.

3.
Glob Chang Biol ; 28(7): 2396-2412, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34967079

RESUMO

Anthropogenic activities and natural processes release dichloromethane (DCM, methylene chloride), a toxic chemical with substantial ozone-depleting capacity. Specialized anaerobic bacteria metabolize DCM; however, the genetic basis for this process has remained elusive. Comparative genomics of the three known anaerobic DCM-degrading bacterial species revealed a homologous gene cluster, designated the methylene chloride catabolism (mec) gene cassette, comprising 8-10 genes encoding proteins with 79.6%-99.7% amino acid identities. Functional annotation identified genes encoding a corrinoid-dependent methyltransferase system, and shotgun proteomics applied to two DCM-catabolizing cultures revealed high expression of proteins encoded on the mec gene cluster during anaerobic growth with DCM. In a DCM-contaminated groundwater plume, the abundance of mec genes strongly correlated with DCM concentrations (R2  = 0.71-0.85) indicating their potential value as process-specific bioremediation biomarkers. mec gene clusters were identified in metagenomes representing peat bogs, the deep subsurface, and marine ecosystems including oxygen minimum zones (OMZs), suggesting a capacity for DCM degradation in diverse habitats. The broad distribution of anaerobic DCM catabolic potential infers a role for DCM as an energy source in various environmental systems, and implies that the global DCM flux (i.e., the rate of formation minus the rate of consumption) might be greater than emission measurements suggest.


Assuntos
Água Subterrânea , Cloreto de Metileno , Anaerobiose , Biodegradação Ambiental , Ecossistema , Cloreto de Metileno/química , Cloreto de Metileno/metabolismo
4.
BMC Microbiol ; 21(1): 308, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749649

RESUMO

BACKGROUND: Microbe-microbe interactions between members of the plant rhizosphere are important but remain poorly understood. A more comprehensive understanding of the molecular mechanisms used by microbes to cooperate, compete, and persist has been challenging because of the complexity of natural ecosystems and the limited control over environmental factors. One strategy to address this challenge relies on studying complexity in a progressive manner, by first building a detailed understanding of relatively simple subsets of the community and then achieving high predictive power through combining different building blocks (e.g., hosts, community members) for different environments. Herein, we coupled this reductionist approach with high-resolution mass spectrometry-based metaproteomics to study molecular mechanisms driving community assembly, adaptation, and functionality for a defined community of ten taxonomically diverse bacterial members of Populus deltoides rhizosphere co-cultured either in a complex or defined medium. RESULTS: Metaproteomics showed this defined community assembled into distinct microbiomes based on growth media that eventually exhibit composition and functional stability over time. The community grown in two different media showed variation in composition, yet both were dominated by only a few microbial strains. Proteome-wide interrogation provided detailed insights into the functional behavior of each dominant member as they adjust to changing community compositions and environments. The emergence and persistence of select microbes in these communities were driven by specialization in strategies including motility, antibiotic production, altered metabolism, and dormancy. Protein-level interrogation identified post-translational modifications that provided additional insights into regulatory mechanisms influencing microbial adaptation in the changing environments. CONCLUSIONS: This study provides high-resolution proteome-level insights into our understanding of microbe-microbe interactions and highlights specialized biological processes carried out by specific members of assembled microbiomes to compete and persist in changing environmental conditions. Emergent properties observed in these lower complexity communities can then be re-evaluated as more complex systems are studied and, when a particular property becomes less relevant, higher-order interactions can be identified.


Assuntos
Bactérias/metabolismo , Microbiologia do Solo , Bactérias/química , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espectrometria de Massas , Microbiota , Raízes de Plantas/microbiologia , Populus/crescimento & desenvolvimento , Populus/microbiologia , Rizosfera
5.
Hortic Res ; 8(1): 130, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059650

RESUMO

Small secreted proteins (SSPs) are less than 250 amino acids in length and are actively transported out of cells through conventional protein secretion pathways or unconventional protein secretion pathways. In plants, SSPs have been found to play important roles in various processes, including plant growth and development, plant response to abiotic and biotic stresses, and beneficial plant-microbe interactions. Over the past 10 years, substantial progress has been made in the identification and functional characterization of SSPs in several plant species relevant to agriculture, bioenergy, and horticulture. Yet, there are potentially a lot of SSPs that have not been discovered in plant genomes, which is largely due to limitations of existing computational algorithms. Recent advances in genomics, transcriptomics, and proteomics research, as well as the development of new computational algorithms based on machine learning, provide unprecedented capabilities for genome-wide discovery of novel SSPs in plants. In this review, we summarize known SSPs and their functions in various plant species. Then we provide an update on the computational and experimental approaches that can be used to discover new SSPs. Finally, we discuss strategies for elucidating the biological functions of SSPs in plants.

6.
mBio ; 12(2)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906923

RESUMO

Dichloroacetate (DCA) commonly occurs in the environment due to natural production and anthropogenic releases, but its fate under anoxic conditions is uncertain. Mixed culture RM comprising "Candidatus Dichloromethanomonas elyunquensis" strain RM utilizes DCA as an energy source, and the transient formation of formate, H2, and carbon monoxide (CO) was observed during growth. Only about half of the DCA was recovered as acetate, suggesting a fermentative catabolic route rather than a reductive dechlorination pathway. Sequencing of 16S rRNA gene amplicons and 16S rRNA gene-targeted quantitative real-time PCR (qPCR) implicated "Candidatus Dichloromethanomonas elyunquensis" strain RM in DCA degradation. An (S)-2-haloacid dehalogenase (HAD) encoded on the genome of strain RM was heterologously expressed, and the purified HAD demonstrated the cofactor-independent stoichiometric conversion of DCA to glyoxylate at a rate of 90 ± 4.6 nkat mg-1 protein. Differential protein expression analysis identified enzymes catalyzing the conversion of DCA to acetyl coenzyme A (acetyl-CoA) via glyoxylate as well as enzymes of the Wood-Ljungdahl pathway. Glyoxylate carboligase, which catalyzes the condensation of two molecules of glyoxylate to form tartronate semialdehyde, was highly abundant in DCA-grown cells. The physiological, biochemical, and proteogenomic data demonstrate the involvement of an HAD and the Wood-Ljungdahl pathway in the anaerobic fermentation of DCA, which has implications for DCA turnover in natural and engineered environments, as well as the metabolism of the cancer drug DCA by gut microbiota.IMPORTANCE Dichloroacetate (DCA) is ubiquitous in the environment due to natural formation via biological and abiotic chlorination processes and the turnover of chlorinated organic materials (e.g., humic substances). Additional sources include DCA usage as a chemical feedstock and cancer drug and its unintentional formation during drinking water disinfection by chlorination. Despite the ubiquitous presence of DCA, its fate under anoxic conditions has remained obscure. We discovered an anaerobic bacterium capable of metabolizing DCA, identified the enzyme responsible for DCA dehalogenation, and elucidated a novel DCA fermentation pathway. The findings have implications for the turnover of DCA and the carbon and electron flow in electron acceptor-depleted environments and the human gastrointestinal tract.


Assuntos
Bactérias Anaeróbias/metabolismo , Ácido Dicloroacético/metabolismo , Peptococcaceae/genética , Peptococcaceae/metabolismo , Anaerobiose , Bactérias Anaeróbias/genética , Composição de Bases , Ácido Dicloroacético/química , Fermentação , Humanos , Peptococcaceae/classificação , Peptococcaceae/isolamento & purificação , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
7.
Environ Sci Technol ; 55(8): 4831-4841, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33683880

RESUMO

Bioremediation of chlorinated ethenes in anoxic aquifers hinges on organohalide-respiring Dehalococcoidia expressing vinyl chloride (VC) reductive dehalogenase (RDase). The tceA gene encoding the trichloroethene-dechlorinating RDase TceA is frequently detected in contaminated groundwater but not recognized as a biomarker for VC detoxification. We demonstrate that tceA-carrying Dehalococcoides mccartyi (Dhc) strains FL2 and 195 grow with VC as an electron acceptor when sufficient vitamin B12 (B12) is provided. Strain FL2 cultures that received 50 µg L-1 B12 completely dechlorinated VC to ethene at rates of 14.80 ± 1.30 µM day-1 and attained 1.64 ± 0.11 × 108 cells per µmol of VC consumed. Strain 195 attained similar growth yields of 1.80 ± 1.00 × 108 cells per µmol of VC consumed, and both strains could be consecutively transferred with VC as the electron acceptor. Proteomic analysis demonstrated TceA expression in VC-grown strain FL2 cultures. Resequencing of the strain FL2 and strain 195 tceA genes identified non-synonymous substitutions, although their consequences for TceA function are currently unknown. The finding that Dhc strains expressing TceA respire VC can explain ethene formation at chlorinated solvent sites, where quantitative polymerase chain reaction analysis indicates that tceA dominates the RDase gene pool.


Assuntos
Chloroflexi , Tricloroetileno , Cloreto de Vinil , Poluentes Químicos da Água , Biodegradação Ambiental , Chloroflexi/genética , Dehalococcoides , Etilenos , Proteômica
8.
Mol Plant Microbe Interact ; 33(10): 1177-1188, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32597696

RESUMO

Small peptides that are proteolytic cleavage products (PCPs) of less than 100 amino acids are emerging as key signaling molecules that mediate cell-to-cell communication and biological processes that occur between and within plants, fungi, and bacteria. Yet, the discovery and characterization of these molecules is largely overlooked. Today, selective enrichment and subsequent characterization by mass spectrometry-based sequencing offers the greatest potential for their comprehensive characterization, however qualitative and quantitative performance metrics are rarely captured. Herein, we addressed this need by benchmarking the performance of an enrichment strategy, optimized specifically for small PCPs, using state-of-the-art de novo-assisted peptide sequencing. As a case study, we implemented this approach to identify PCPs from different root and foliar tissues of the hybrid poplar Populus × canescens 717-1B4 in interaction with the ectomycorrhizal basidiomycete Laccaria bicolor. In total, we identified 1,660 and 2,870 Populus and L. bicolor unique PCPs, respectively. Qualitative results supported the identification of well-known PCPs, like the mature form of the photosystem II complex 5-kDa protein (approximately 3 kDa). A total of 157 PCPs were determined to be significantly more abundant in root tips with established ectomycorrhiza when compared with root tips without established ectomycorrhiza and extramatrical mycelium of L. bicolor. These PCPs mapped to 64 Populus proteins and 69 L. bicolor proteins in our database, with several of them previously implicated in biologically relevant associations between plant and fungus.


Assuntos
Laccaria/fisiologia , Peptídeos/química , Populus/química , Populus/microbiologia , Proteólise , Regulação da Expressão Gênica de Plantas , Interações entre Hospedeiro e Microrganismos , Micorrizas/fisiologia , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Análise de Sequência de Proteína
9.
Anal Chem ; 91(11): 7273-7279, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31075198

RESUMO

Peptide cofragmentation leads to chimeric MS/MS spectra that negatively impact traditional single-peptide match-per-spectrum (sPSM) search strategies in proteomics. The collection of chimeric spectra is influenced by peptide coelution and the width of precursor isolation windows. Although peptide cofragmentation can be reduced by advanced chromatography, such as UHPLC and 2D-HPLC separation schemes, and narrower isolation windows, chimeric spectra can still be as high as 30-50% of the total MS/MS spectra collected. Alternatively, cofragmented peptides in chimeric spectra and the use of wider isolation windows benefit multiple-peptide matches-per-spectrum (mPSM) algorithms, such as CharmeRT, which facilitate the identification of several cofragmented peptides. Considering recent advancements in LC and mPSM methodologies, we present a comprehensive examination of the levels of chimeric spectra collected in the analysis of a HeLa digest measured using different LC modes of separation and isolation windows and compare the depth of identifications obtained when these data are annotated using a sPSM or a mPSM approach. Our results demonstrate that MS/MS data derived from 1D-HPLC strategies under different gradient schemes and searched with CharmeRT yielded higher average numbers of PSMs (11%-49%), peptide analytes (10%-16%), and peptide sequences (3%-10%) compared to data derived from 1D-UHPLC runs but searched with a sPSM strategy. Interestingly, data from a 2D-HPLC separation strategy benefits more from the application of CharmeRT results when compared to a 50 cm 1D-UHPLC column employing a 500 min gradient. Overall, these results provide new insights into how to better configure LC-MS/MS measurements for improved throughput and peptide identification in complex proteomes.


Assuntos
Peptídeos/isolamento & purificação , Proteômica , Algoritmos , Cromatografia Líquida de Alta Pressão , Células HeLa , Humanos , Peptídeos/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...