Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Nano ; 17(17): 16565-16572, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602897

RESUMO

Poor individualization and interfacial adhesion prevent single-walled carbon nanotube (SWNT)-polymer composites from reaching outstanding mechanical properties. With much larger diameters, but common structural features (high aspect ratio and absence of functional groups for covalent or supramolecular attachment with the polymer), carbon fibers face similar problems, which are addressed by covering the fibers with a thin layer of polymer. This sizing strategy has allowed carbon fibers to become the filler of choice for the highest performing materials. Inspired by this, here we investigate the use of the mechanical bond to wrap SWNTs with a layer of polymeric material to produce SWNTs mechanically interlocked with a layer of polymer. We first validate the formation of mechanically interlocked nanotubes (MINTs) using mixtures of SWNTs of relatively large average diameter (1.6 ± 0.4 nm), which are commercially available at reasonable prices and therefore could be technologically relevant as polymer fillers. We then design and synthesize by ring-opening metathesis polymerization (ROMP) a polymer decorated with multiple U-shaped molecules, which are later ring-closed around the SWNTs using metathesis. The obtained hybrids contain a high degree of individualized SWNTs and exhibit significantly increased mechanical properties when compared to the matrix polymer. We envision that this strategy could be employed to produce SWNTs interlocked with polymer layers with various designs for polymer reinforcement.

2.
Chem Soc Rev ; 51(23): 9433-9444, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36239532

RESUMO

Single-walled carbon nanotubes (SWNTs) present one of the most interesting collections of properties among nanomaterials. Some sort of chemical modification of SWNTs is often used as a strategy to make the most of their intrinsic properties. In the last few years, the mechanical bond has been added to the chemistry toolbox for SWNT modification. In this Tutorial Review, we first discuss the characteristics of the mechanical bond that make it appealing for materials science in general and SWNTs in particular. We then describe the potential advantages of making mechanically-interlocked derivatives of SWNTs (MINTs), as compared to covalent or classic supramolecular derivatives of SWNTs. We go on to explain the different methods of synthesis of MINTs, highlighting their common features as an indication towards possible future synthetic strategies. Finally, we illustrate with examples how the making of MINTs can contribute to modifying the surface properties of SWNTs, modulating their electronic properties, and linking them to functional molecular fragments. The overall objective of this Review is to introduce the reader to the application of the chemistry of the mechanical bond to SWNTs: why it is relevant, how it is done in practice, what it has shown already as potential contributions towards applications, and what could be done in the future.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Eletrônica , Propriedades de Superfície
3.
Nanoscale Horiz ; 6(7): 551-558, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33889898

RESUMO

The building of van der Waals heterostructures and the decoration of 2D materials with organic molecules share a common goal: to obtain ultrathin materials with tailored properties. Performing controlled chemistry on van der Waals heterostructures would add an extra level of complexity, providing a pathway towards 2D-2D-0D mixed-dimensional heterostructures. Here we show that thiol-ene-like "click" chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure with maleimide reagents. ATR-IR and NMR analyses corroborate the Michael addition mechanism via the formation of a S-C covalent bond, while Raman and HR-TEM show that the SnS2-PbS alternating structure of franckeite is preserved, and suggest that SnS2 reacts preferentially, which is confirmed through XPS. We illustrate how this methodology can be used to add functional molecular moieties by decorating franckeite with porphyrins. UV-vis-NIR spectroscopy confirms that the chromophore ground state remains operative, showing negligible ground-state interactions with the franckeite. Excited-state interactions across the hybrid interface are revealed. Time-resolved photoluminescence confirms the presence of excited-state deactivation in the linked porphyrin ascribed to energy transfer to the franckeite.

4.
Nat Commun ; 12(1): 1578, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707459

RESUMO

Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale.

5.
ChemistryOpen ; 9(7): 730, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32626641

RESUMO

Invited for this month's cover is Emilio M. Pérez from IMDEA Nanociencia in Madrid. The cover picture shows the supramolecular association of an ammonium guest to a crown-ether host which is covalently attached to a SWNT. In our manuscript, we show that the corresponding "KPOW!!" would be significantly louder for the binding of the free species in solution, in the absence of the SWNT. Read the full text of their Communication at 10.1002/open.202000018.

6.
ChemistryOpen ; 9(7): 731-734, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32626642

RESUMO

The decoration of SWNTs with supramolecular motifs is a common strategy for their subsequent noncovalent functionalization. However, due to the lack of a standard methodology, there are no quantitative measurements showing the extent to which the supramolecular equilibria are affected by one of the host-guest couple being anchored to the SWNT. Here, we use a method we initially developed to quantify association of small organic molecules to the walls of SWNTs to compare association constants of two host-guest systems, a Hamilton receptor-cyanuric acid derivative and a crown ether-ammonium couple, in solution and when the host is covalently attached to the SWNTs. Our data show that association does occur, but the stability of the complexes is significantly affected, as reflected in a sizable reduction in their association constant, when compared to solution.

7.
Angew Chem Int Ed Engl ; 59(42): 18774-18785, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32544289

RESUMO

The formation of discrete macrocycles wrapped around single-walled carbon nanotubes (SWCNTs) has recently emerged as an appealing strategy to functionalize these carbon nanomaterials and modify their properties. Here, we demonstrate that the reversible disulfide exchange reaction, which proceeds under mild conditions, can install relatively large amounts of mechanically interlocked disulfide macrocycles on the one-dimensional nanotubes. Size-selective functionalization of a mixture of SWCNTs of different diameters were observed, presumably arising from error correction and the presence of relatively rigid, curved π-systems in the key building blocks. A combination of UV/Vis/NIR, Raman, photoluminescence excitation, and transient absorption spectroscopy indicated that the small (6,4)-SWCNTs were predominantly functionalized by the small macrocycles 12 , whereas the larger (6,5)-SWCNTs were an ideal match for the larger macrocycles 22 . This size selectivity, which was rationalized computationally, could prove useful for the purification of nanotube mixtures, since the disulfide macrocycles can be removed quantitatively under mild reductive conditions.

8.
Phys Chem Chem Phys ; 21(22): 11670-11675, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31125037

RESUMO

A new series of fullerene receptors based on exTTF macrocycles with alkyl ether chains of increasing length is reported. The novel macrocyclic receptors are able to favourably interact with fullerene C60 through a synergistic combination of π-π, CHπ and nπ noncovalent interactions. We identify that the highest affinity towards C60 recognition is achieved for the host with the tightest fit; that is, the smallest receptor with a cavity large enough to host the buckyball inside (log Ka = 5.2 in chlorobenzene at 298 K). However, besides this expected observation, theoretical calculations evidence that the most stable self-assembling configuration corresponds for all the receptors to an outside-ring binding mode, in which the C60 guest is out of the cavity of the receptor. The higher stability of this configuration results from the smaller deformation energy it implies for the receptor, and allows to explain the experimental trends in the association constants.

9.
Nanoscale ; 10(17): 7966-7970, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29616692

RESUMO

van der Waals heterostructures (vdWH) are made of different two-dimensional (2D) layers stacked on top of each other, forming a single material with unique properties that differ from those of the individual 2D constituent layers, and that can be modulated through the interlayer interaction. These hetero-materials can be artificially made by mechanical stamping, solution processing or epitaxial growth. Alternatively, franckeite has been recently described as an example of a naturally-occurring vdWH that can be exfoliated down to nanometer thicknesses. Research on vdWHs has so far been limited to manually exfoliated and stamped individual devices. Here, a scalable and fast method to fabricate vdWH nanodevices from liquid phase exfoliated nanoflakes is reported. The transport and positioning of the flakes into localized submicrometer structures is achieved simultaneously in multiple devices via a dielectrophoretic process. The complex vdWH is preserved after dielectrophoresis and the properties of the resulting field-effect transistors are equivalent to those fabricated via mechanical exfoliation and stamping. The combination of liquid phase exfoliation and dielectrophoretic assembly is particularly suited for the study of vdWHs and applications where large-scale fabrication is required.

10.
Angew Chem Int Ed Engl ; 56(40): 12240-12244, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28671323

RESUMO

The encapsulation of viologen derivatives into metallic single-walled carbon nanotubes (SWNTs) results in the opening of a band gap, making the SWNTs semiconducting. Raman spectroscopy, thermogravimetric analysis, and aberration-corrected high-resolution transmission electron microscopy confirm the encapsulation process. Through the fabrication of field-effect transistor devices, the change of the electronic structure of the tubes from metallic to semiconducting upon the encapsulation is confirmed. The opening of a gap in the band structure of the tubes was not detected in supramolecular controls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...