Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Oral Biol Craniofac Res ; 10(4): 361-368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714789

RESUMO

OBJECTIVE: In order to use fluconazole as an antifungal in cell cultures, we evaluated its possible cytotoxic effects and its influence on the proliferation and viability of canine dental pulp-derived stem cells (cDPSCs). METHODS: Samples from permanent canine teeth were placed in a sterile tube with IMDM, penicillin-streptomycin, sodium heparin, and different concentrations of fluconazole. Dental pulp was digested (collagenase type II) and expanded in vitro. After 12 days of culture, enzymatic dissociation of the cDPSCs was performed to quantify, differentiate, and characterize the cells. Cytotoxicity was evaluated based on cell viability in response to fluconazole treatment using the 7-AAD dye. RESULTS: Characterization of the cDPSCs revealed that fluconazole had no influence on the immunophenotypic characteristics and differentiation of these cells. Cell proliferation assay revealed that fluconazole did not significantly interfere with the replication capacity of the cDPSCs. Cytotoxicity analysis revealed a loss of cell viability as the fluconazole concentration increased. Although there was an increase in cell mortality, the number of dead cells remained low. Though the higher concentration of fluconazole (240 µg/mL) resulted in a higher number of non-viable cells, it remained safe for use. CONCLUSION: To prevent fungal contamination that causes a loss of samples during expansion of cDPSCs and to maintain minimal cell toxicity, we suggest adding 120 µg/mL of fluconazole to the teeth collection medium and cDPSCs culture.

2.
Front Vet Sci ; 6: 383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781580

RESUMO

Paraparesis and paraplegia are common conditions in dogs, most often caused by a disc herniation in the thoracolumbar spinal segments (T3-L3), which is a neurological emergency. Surgical decompression should be performed as soon as possible when spinal compression is revealed by myelography, computed tomography, or magnetic resonance imaging. Mesenchymal stem-cell therapy is a promising adjunct treatment for spinal cord injury. This study sought to compare the effects of surgical decompression alone and combined with an allogeneic transplantation of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) in the treatment of dogs with acute paraplegia. Twenty-two adult dogs of different breeds with acute paraplegia resulting from a Hansen type I disc herniation in the thoracolumbar region (T3-L3) were evaluated using computed tomography. All dogs had grade IV or V lesions and underwent surgery within 7 days after symptom onset. They were randomly assigned into two groups, 11 dogs in each. The dogs in Group I underwent hemilaminectomy, and those in Group II underwent hemilaminectomy and cAd-MSC epidural transplantation. In both groups, all dogs with grade IV lesions recovered locomotion. The median locomotion recovery period was 7 days for Group II and 21 days for Group I, and this difference was statistically significant (p < 0.05). Moreover, the median length of hospitalization after the surgery was statistically different between the two groups (Group I, 4 days; Group II, 3 days; p < 0.05). There were no statistically significant between-group differences regarding the number of animals with grade IV or V lesions that recovered locomotion and nociception. In conclusion, compared with surgical decompression alone, the use of epidural cAd-MSC transplantation with surgical decompression may contribute to faster locomotor recovery in dogs with acute paraplegia and reduce the length of post-surgery hospitalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...