Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Methods Mol Biol ; 2268: 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085258

RESUMO

The understanding of how biological membranes are organized and how they function has constantly been evolving over the past decades. Instead of just serving as a medium in which specific proteins are located, certain parts of the lipid bilayer contribute to platforms that assemble signaling complexes by providing a microenvironment that facilitates effective protein-protein interactions. G protein-coupled receptors (GPCRs) and relevant signaling molecules, including the heterotrimeric G proteins, key enzymes such as kinases and phosphatases, trafficking proteins, and secondary messengers, preferentially partition to these highly organized cell membrane microdomains, called lipid rafts. Lipid rafts are essential for the trafficking and signaling of GPCRs. The study of GPCR biology in the context of lipid rafts involves the localization of the GPCR of interest in lipid rafts, at the basal state and upon receptor agonism, and the evaluation of the biological functions of the GPCR in appropriate cell lines. The lack of standardized methodologies to study lipid rafts, in general, and of the workings of GPCRs in lipid rafts, in particular, and the inescapable drawbacks of current methods have hampered the complete understanding of the underlying molecular mechanisms. Newer methodologies that allow the study of GPCRs in their native form are needed. The use of complementary approaches that produce mutually supportive results appears to be the best way for drawing conclusions with regard to the distribution and activity of GPCRs in lipid rafts.


Assuntos
Detergentes/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Immunoblotting/métodos , Microdomínios da Membrana/química , Microscopia Confocal/métodos , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular , Proteínas Heterotriméricas de Ligação ao GTP/isolamento & purificação , Humanos , Microdomínios da Membrana/metabolismo , Receptores Acoplados a Proteínas G/isolamento & purificação , Transdução de Sinais
2.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921209

RESUMO

Gastrin, secreted by G-cells, and glucagon-like peptide-1 (GLP-1), secreted by L-cells, may participate in the regulation of sodium balance. We studied the effect of sodium in mice in vivo and mouse ileum and human L-cells, on GLP-1 secretion, and the role of NFAT5 and gastrin-releasing peptide receptor (GRPR) in this process. A high-sodium diet increases serum GLP-1 levels in mice. Increasing sodium concentration stimulates GLP-1 secretion from mouse ileum and L-cells. GRP enhances the high sodium-induced increase in GLP-1 secretion. High sodium increases cellular GLP-1 expression, while low and high sodium concentrations increase NFAT5 and GRPR expression. Silencing NFAT5 in L-cells abrogates the stimulatory effect of GRP on the high sodium-induced GLP-1 secretion and protein expression, and the sodium-induced increase in GRPR expression. GLP-1 and gastrin decrease the expression of Na+-K+/ATPase and increase the phosphorylation of sodium/hydrogen exchanger type 3 (NHE3) in human renal proximal tubule cells (hRPTCs). This study gives a new perspective on the mechanisms of GLP-1 secretion, especially that engendered by ingested sodium, and the ability of GLP-1, with gastrin, to decrease Na+-K+/ATPase expression and NHE3 function in hRPTCs. These results may contribute to the better utilization of current and future GLP-1-based drugs in the treatment of hypertension.


Assuntos
Gastrinas/genética , Peptídeo 1 Semelhante ao Glucagon/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Hipertensão/genética , Fatores de Transcrição/genética , Animais , Células Secretoras de Gastrina/metabolismo , Regulação da Expressão Gênica/genética , Inativação Gênica , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Túbulos Renais Proximais/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Sódio/metabolismo , Sódio/farmacologia , Trocador 3 de Sódio-Hidrogênio/genética , ATPase Trocadora de Sódio-Potássio/genética
3.
Antioxid Redox Signal ; 34(9): 716-735, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32349533

RESUMO

Significance: The kidney plays an important role in the long-term control of blood pressure. Oxidative stress is one of the fundamental mechanisms responsible for the development of hypertension. Dopamine, via five subtypes of receptors, plays an important role in the control of blood pressure by various mechanisms, including the inhibition of oxidative stress. Recent Advances: Dopamine receptors exert their regulatory function to decrease the oxidative stress in the kidney and ultimately maintain normal sodium balance and blood pressure homeostasis. An aberration of this regulation may be involved in the pathogenesis of hypertension. Critical Issues: Our present article reviews the important role of oxidative stress and intrarenal dopaminergic system in the regulation of blood pressure, summarizes the current knowledge on renal dopamine receptor-mediated antioxidation, including decreasing reactive oxygen species production, inhibiting pro-oxidant enzyme nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and stimulating antioxidative enzymes, and also discusses its underlying mechanisms, including the increased activity of G protein-coupled receptor kinase 4 (GRK4) and abnormal trafficking of renal dopamine receptors in hypertensive status. Future Directions: Identifying the mechanisms of renal dopamine receptors in the regulation of oxidative stress and their contribution to the pathogenesis of hypertension remains an important research focus. Increased understanding of the role of reciprocal regulation between renal dopamine receptors and oxidative stress in the regulation of blood pressure may give us novel insights into the pathogenesis of hypertension and provide a new treatment strategy for hypertension.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/genética , Hipertensão/genética , Rim/metabolismo , Receptores Dopaminérgicos/genética , Antioxidantes/metabolismo , Pressão Sanguínea/genética , Dopamina/genética , Dopamina/metabolismo , Hipertensão/metabolismo , Hipertensão/patologia , Rim/patologia , NADPH Oxidases/genética , Estresse Oxidativo/genética , Fosforilação/genética , Espécies Reativas de Oxigênio/metabolismo
4.
Methods Mol Biol ; 2187: 187-206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32770507

RESUMO

Numerous G protein-coupled receptors (GPCRs) and GPCR-signaling molecules reside in lipid rafts and thus, are inherently regulated in these microdomains. However, the limitations of current methods to investigate lipid raft biology and GPCR activity in situ have hindered the complete understanding of the molecular underpinnings of GPCR trafficking and signaling, especially in the whole organism. This book chapter details an innovative in vivo approach to study the crucial role of lipid rafts on the workings of GPCRs in the mouse kidney. This protocol involves the use of a modified mini osmotic pump to deliver an agent that selectively disrupts the lipid raft in the kidney.


Assuntos
Rim/metabolismo , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Camundongos , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia
5.
FASEB J ; 34(6): 7941-7957, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32293069

RESUMO

Acute renal depletion of sorting nexin 1 (SNX1) in mice results in blunted natriuretic response and hypertension due to impaired dopamine D5 receptor (D5 R) activity. We elucidated the molecular mechanisms for these phenotypes in Snx1-/- mice. These mice had increased renal expressions of angiotensin II type 1 receptor (AT1 R), NADPH oxidase (NOX) subunits, D5 R, and NaCl cotransporter. Basal reactive oxygen species (ROS), NOX activity, and blood pressure (BP) were also higher in Snx1-/- mice, which were normalized by apocynin, a drug that prevents NOX assembly. Renal proximal tubule (RPT) cells from hypertensive (HT) Euro-American males had deficient SNX1 activity, impaired D5 R endocytosis, and increased ROS compared with cells from normotensive (NT) Euro-American males. siRNA-mediated depletion of SNX1 in RPT cells from NT subjects led to a blunting of D5 R agonist-induced increase in cAMP production and decrease in Na+ transport, effects that were normalized by over-expression of SNX1. Among HT African-Americans, three of the 12 single nucleotide polymorphisms interrogated for the SNX1 gene were associated with a decrease in systolic BP in response to hydrochlorothiazide (HCTZ). The results illustrate a new paradigm for the development of hypertension and imply that the trafficking protein SNX1 may be a crucial determinant for hypertension and response to antihypertensive therapy.


Assuntos
Hipertensão/metabolismo , Estresse Oxidativo/fisiologia , Nexinas de Classificação/metabolismo , Animais , Pressão Sanguínea/fisiologia , Linhagem Celular , Feminino , Humanos , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , NADPH Oxidases/metabolismo , Oxirredução , Transporte Proteico/fisiologia , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
6.
FASEB J ; 34(5): 6999-7017, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32259353

RESUMO

Effective receptor signaling is anchored on the preferential localization of the receptor in lipid rafts, which are plasma membrane platforms replete with cholesterol and sphingolipids. We hypothesized that the dopamine D1 receptor (D1 R) contains structural features that allow it to reside in lipid rafts for its activity. Mutation of C347 palmitoylation site and Y218 of a newly identified Cholesterol Recognition Amino Acid Consensus motif resulted in the exclusion of D1 R from lipid rafts, blunted cAMP response, impaired sodium transport, and increased oxidative stress in renal proximal tubule cells (RPTCs). Kidney-restricted silencing of Drd1 in C57BL/6J mice increased blood pressure (BP) that was normalized by renal tubule-restricted rescue with D1 R-wild-type but not the mutant D1 R 347A that lacks a palmitoylation site. Kidney-restricted disruption of lipid rafts by ß-MCD jettisoned the D1 R from the brush border, decreased sodium excretion, and increased oxidative stress and BP in C57BL/6J mice. Deletion of the PX domain of the novel D1 R-binding partner sorting nexin 19 (SNX19) resulted in D1 R partitioning solely to non-raft domains, while silencing of SNX19 impaired D1 R function in RPTCs. Kidney-restricted silencing of Snx19 resulted in hypertension in C57BL/6J mice. Our results highlight the essential role of lipid rafts for effective D1 R signaling.


Assuntos
Rim/metabolismo , Microdomínios da Membrana/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Sítios de Ligação/genética , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Células Cultivadas , AMP Cíclico/metabolismo , Inativação Gênica , Humanos , Túbulos Renais Proximais/metabolismo , Lipoilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Estresse Oxidativo , Receptores de Dopamina D1/deficiência , Receptores de Dopamina D1/genética , Sódio/metabolismo
7.
Clin Sci (Lond) ; 133(5): 723-737, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30877150

RESUMO

The sorting nexin (SNX) family consists of a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins that play pivotal roles in the regulation of protein trafficking. This includes the entire endocytic pathway, such as endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX pathway are involved in several forms of cardiovascular disease (CVD). Moreover, SNX gene variants are associated with CVDs. In this review, we discuss the current knowledge on SNX-mediated regulatory mechanisms and their roles in the pathogenesis and treatment of CVDs.


Assuntos
Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Nexinas de Classificação/metabolismo , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Sistema Cardiovascular/fisiopatologia , Endocitose , Endossomos/metabolismo , Humanos , Prognóstico , Transporte Proteico , Transdução de Sinais , Nexinas de Classificação/genética
8.
Pharmacogenomics J ; 19(4): 315-336, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30723314

RESUMO

Hypertension is the most prevalent cause of cardiovascular disease and kidney failure, but only about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual genetic variations in the response to antihypertensive medication. Significant strides have been made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of the cardiovascular system. However, the role of ROS in human hypertension is still unclear. Polymorphisms of some genes involved in the regulation of ROS production are associated with hypertension, suggesting their potential influence on blood pressure control and response to antihypertensive medication. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive drugs.


Assuntos
Pressão Sanguínea/genética , Polimorfismo Genético/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Humanos , Hipertensão/genética , Hipertensão/metabolismo
9.
BMC Pregnancy Childbirth ; 19(1): 11, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621627

RESUMO

BACKGROUND: Multiple interrelated pathways contribute to the pathogenesis of preeclampsia, and variants in susceptibility genes may play a role among Filipinos, an ethnically distinct group with high prevalence of the disease. The objective of this study was to examine the association between variants in maternal candidate genes and the development of preeclampsia in a Philippine population. METHODS: A case-control study involving 29 single nucleotide polymorphisms (SNPs) in 21 candidate genes was conducted in 150 patients with preeclampsia (cases) and 175 women with uncomplicated normal pregnancies (controls). Genotyping for the GRK4 and DRD1 gene variants was carried out using the TaqMan Assay, and all other variants were assayed using the Sequenom MassARRAY Iplex Platform. PLINK was used for SNP association testing. Multilocus association analysis was performed using multifactor dimensionality reduction (MDR) analysis. RESULTS: Among the clinical factors, older age (P <  1 × 10-4), higher BMI (P <  1 × 10-4), having a new partner (P = 0.006), and increased time interval from previous pregnancy (P = 0.018) associated with preeclampsia. The MDR algorithm identified the genetic variant ACVR2A rs1014064 as interacting with age and BMI in association with preeclampsia among Filipino women. CONCLUSIONS: The MDR algorithm identified an interaction between age, BMI and ACVR2A rs1014064, indicating that context among genetic variants and demographic/clinical factors may be crucial to understanding the pathogenesis of preeclampsia among Filipino women.


Assuntos
Receptores de Activinas Tipo II/genética , Polimorfismo de Nucleotídeo Único , Pré-Eclâmpsia/genética , Adulto , Fatores Etários , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Redução Dimensional com Múltiplos Fatores , Filipinas , Pré-Eclâmpsia/etnologia , Gravidez , Adulto Jovem
10.
Diabetologia ; 61(3): 727-737, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29080975

RESUMO

AIMS/HYPOTHESIS: We hypothesised that renal sorting nexin 5 (SNX5) regulates the insulin-degrading enzyme (IDE) and, thus, circulating insulin levels. We therefore studied the dynamic interaction between SNX5 and IDE in human renal proximal tubule cells (hRPTCs), as well as in rat and mouse kidneys. METHODS: The regulation of IDE by SNX5 expressed in the kidney was studied in vitro and in vivo. Snx5 or mock siRNA was added to immortalised hRPTCs (passage <20) in culture or selectively infused, via osmotic mini-pump, into the remnant kidney of uninephrectomised mice and rats. RESULTS: SNX5 co-localised with IDE at the plasma membrane and perinuclear area of hRPTCs and in the brush border membrane of proximal tubules of human, rat, and mouse kidneys. Insulin increased the co-localisation and co-immunoprecipitation of SNX5 and IDE in hRPTCs. Silencing SNX5 in hRPTCs decreased IDE expression and activity. Renal-selective silencing of Snx5 (SNX5 protein: 100 ± 25 vs 29 ± 10, p < 0.05 [% of control]) in C57Bl/6J mice decreased IDE protein (100 ± 13 vs 57 ± 6, p < 0.05 [% of control]) and urinary insulin excretion, impaired the responses to insulin and glucose, and increased blood insulin and glucose levels. Spontaneously hypertensive rats (SHRs) had increased blood insulin and glucose levels and decreased renal SNX5 (100 ± 27 vs 29 ± 6, p < 0.05 [% of control]) and IDE (100 ± 5 vs 75 ± 4, p < 0.05 [% of control]) proteins, compared with normotensive Wistar-Kyoto (WKY) rats. Kidney Snx5-depleted WKY rats also had increased blood insulin and glucose levels. The expression of SNX5 and IDE was decreased in RPTCs from SHRs and hypertensive humans compared with cells from normotensive volunteers, indicating a common cause for hyperinsulinaemia and hypertension. CONCLUSIONS/INTERPRETATION: Renal SNX5 positively regulates IDE expression and function. This study is the first to demonstrate the novel and crucial role of renal SNX5 in insulin and glucose metabolism.


Assuntos
Insulisina/metabolismo , Nexinas de Classificação/metabolismo , Animais , Western Blotting , Linhagem Celular , Humanos , Imunoprecipitação , Técnicas In Vitro , Resistência à Insulina/genética , Insulisina/genética , Rim/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Microscopia Confocal , Microscopia de Fluorescência , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Ratos , Ratos Endogâmicos WKY , Reação em Cadeia da Polimerase em Tempo Real , Nexinas de Classificação/genética
11.
Curr Hypertens Rep ; 19(9): 70, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28780627

RESUMO

The rising prevalence of primary pediatric hypertension and its tracking into adult hypertension point to the importance of determining its pathogenesis to gain insights into its current and emerging management. Considering that the intricate control of BP is governed by a myriad of anatomical, molecular biological, biochemical, and physiological systems, multiple genes are likely to influence an individual's BP and susceptibility to develop hypertension. The long-term regulation of BP rests on renal and non-renal mechanisms. One renal mechanism relates to sodium transport. The impaired renal sodium handling in primary hypertension and salt sensitivity may be caused by aberrant counter-regulatory natriuretic and anti-natriuretic pathways. The sympathetic nervous and renin-angiotensin-aldosterone systems are examples of antinatriuretic pathways. An important counter-regulatory natriuretic pathway is afforded by the renal autocrine/paracrine dopamine system, aberrations of which are involved in the pathogenesis of hypertension, including that associated with obesity. We present updates on the complex interactions of these two systems with dietary salt intake in relation to obesity, insulin resistance, inflammation, and oxidative stress. We review how insults during pregnancy such as maternal and paternal malnutrition, glucocorticoid exposure, infection, placental insufficiency, and treatments during the neonatal period have long-lasting effects in the regulation of renal function and BP. Moreover, these effects have sex differences. There is a need for early diagnosis, frequent monitoring, and timely management due to increasing evidence of premature target organ damage. Large controlled studies are needed to evaluate the long-term consequences of the treatment of elevated BP during childhood, especially to establish the validity of the current definition and treatment of pediatric hypertension.


Assuntos
Intervenção Médica Precoce/métodos , Hipertensão , Resistência à Insulina/fisiologia , Sistema Renina-Angiotensina/fisiologia , Cloreto de Sódio na Dieta/metabolismo , Criança , Humanos , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/terapia , Obesidade/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo/fisiologia
12.
Free Radic Biol Med ; 106: 80-90, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28189851

RESUMO

We tested the hypothesis that salt-sensitive hypertension is caused by renal oxidative stress by measuring the blood pressure and reactive oxygen species-related proteins in the kidneys of human G protein-coupled receptor kinase 4γ (hGRK4γ) 486V transgenic mice and non-transgenic (Non-T) littermates on normal and high salt diets. High salt diet increased the blood pressure, associated with impaired sodium excretion, in hGRK4γ486V mice. Renal expressions of NOX isoforms were similar in both strains on normal salt diet but NOX2 was decreased by high salt diet to a greater extent in Non-T than hGRK4γ486V mice. Renal HO-2, but not HO-1, protein was greater in hGRK4γ486V than Non-T mice on normal salt diet and normalized by high salt diet. On normal salt diet, renal CuZnSOD and ECSOD proteins were similar but renal MnSOD was lower in hGRK4γ486V than Non-T mice and remained low on high salt diet. High salt diet decreased renal CuZnSOD in hGRK4γ486V but not Non-T mice and decreased renal ECSOD to a greater extent in hGRK4γ486V than Non-T mice. Renal SOD activity, superoxide production, and NOS3 protein were similar in two strains on normal salt diet. However, high salt diet decreased SOD activity and NOS3 protein and increased superoxide production in hGRK4γ486V mice but not in Non-T mice. High salt diet also increased urinary 8-isoprostane and 8-hydroxydeoxyguanosine to a greater extent in hGRK4γ486V than Non-T mice. hGRK4γwild-type mice were normotensive and hGRK4γ142V mice were hypertensive but both were salt-resistant and in normal redox balance. Chronic tempol treatment partially prevented the salt-sensitivity of hGRK4γ486V mice. Thus, hGRK4γ486V causes salt-sensitive hypertension due, in part, to defective renal antioxidant mechanisms.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/genética , Hipertensão/enzimologia , Óxido Nítrico Sintase Tipo III/genética , Superóxido Dismutase/genética , Animais , Pressão Sanguínea/genética , Modelos Animais de Doenças , Heme Oxigenase-1/genética , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/enzimologia , Rim/fisiopatologia , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , NADPH Oxidase 2/genética , Estresse Oxidativo/genética , Tolerância ao Sal/genética , Sais/toxicidade , Superóxidos/metabolismo
13.
Clin Exp Hypertens ; 38(7): 578-585, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27668980

RESUMO

The vascular endothelial growth factor (VEGF) family is important for establishing normal pregnancy, and related single nucleotide polymorphisms (SNPs) are implicated in abnormal placentation and preeclampsia. We evaluated the association between preeclampsia and several VEGF SNPs among Filipinos, an ethnically distinct group with high prevalence of preeclampsia. The genotypes and allelic variants were determined in a case-control study (191 controls and 165 preeclampsia patients) through SNP analysis of VEGF-A (rs2010963, rs3025039) and VEGF-C (rs7664413) and their corresponding receptors VEGFR1 (rs722503, rs12584067, rs7335588) and VEGFR3 (rs307826) from venous blood DNA. VEGF-A rs3025039 C allele has been shown to associate with preeclampsia (odds ratio of 1.648 (1.03-2.62)), while the T allele bestowed an additive effect for the maintenance of normal, uncomplicated pregnancy and against the development of preeclampsia (odds ratio of 0.62 (0.39-0.98)). VEGFR1 rs722503 is associated with preeclampsia occurring at or after the age of 40 years. The results showed that genetic variability of VEGF-A and VEGFR1 are important in the etiology of preeclampsia among Filipinos.


Assuntos
Placentação/genética , Pré-Eclâmpsia , Fator A de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Adulto , Alelos , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Razão de Chances , Filipinas/etnologia , Polimorfismo de Nucleotídeo Único , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/genética , Gravidez , Fator A de Crescimento do Endotélio Vascular/sangue
15.
Methods Cell Biol ; 132: 3-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26928536

RESUMO

The understanding of how biological membranes are organized and how they function has evolved. Instead of just serving as a medium in which certain proteins are found, portions of the lipid bilayer have been demonstrated to form specialized platforms that foster the assembly of signaling complexes by providing a microenvironment that is conducive for effective protein-protein interactions. G protein-coupled receptors (GPCRs) and relevant signaling molecules, including the heterotrimeric G proteins, key enzymes such as kinases and phosphatases, trafficking proteins, and secondary messengers, preferentially partition to these highly organized cell membrane microdomains, called lipid rafts. As such, lipid rafts are crucial for the trafficking and signaling of GPCRs. The study of GPCR biology in the context of lipid rafts involves the localization of the GPCR of interest in lipid rafts, at the basal state and upon receptor agonism, and the evaluation of the biological functions of the GPCR in appropriate cell lines. The lack of standardized methodology to study lipid rafts, in general, and of the workings of GPCRs in lipid rafts, in particular, and the inherent drawbacks of current methods have hampered the complete understanding of the underlying molecular mechanisms. Newer methodologies that allow the study of GPCRs in their native form are needed. The use of complementary approaches that produce mutually supportive results appear to be the best way for drawing conclusions with regards to the distribution and activity of GPCRs in lipid rafts.


Assuntos
Microdomínios da Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Cultivadas , Humanos , Microscopia de Fluorescência , Transporte Proteico , Receptores Acoplados a Proteínas G/isolamento & purificação , Transdução de Sinais
16.
Hypertension ; 67(2): 325-34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26667412

RESUMO

The influence of a single gene on the pathogenesis of essential hypertension may be difficult to ascertain, unless the gene interacts with other genes that are germane to blood pressure regulation. G-protein-coupled receptor kinase type 4 (GRK4) is one such gene. We have reported that the expression of its variant hGRK4γ(142V) in mice results in hypertension because of impaired dopamine D1 receptor. Signaling through dopamine D1 receptor and angiotensin II type I receptor (AT1R) reciprocally modulates renal sodium excretion and blood pressure. Here, we demonstrate the ability of the hGRK4γ(142V) to increase the expression and activity of the AT1R. We show that hGRK4γ(142V) phosphorylates histone deacetylase type 1 and promotes its nuclear export to the cytoplasm, resulting in increased AT1R expression and greater pressor response to angiotensin II. AT1R blockade and the deletion of the Agtr1a gene normalize the hypertension in hGRK4γ(142V) mice. These findings illustrate the unique role of GRK4 by targeting receptors with opposite physiological activity for the same goal of maintaining blood pressure homeostasis, and thus making the GRK4 a relevant therapeutic target to control blood pressure.


Assuntos
Benzimidazóis/farmacologia , Pressão Sanguínea/fisiologia , Quinase 4 de Receptor Acoplado a Proteína G/genética , Regulação da Expressão Gênica , Histona Desacetilase 1/antagonistas & inibidores , Hipertensão/genética , Receptor Tipo 1 de Angiotensina/genética , Tetrazóis/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Compostos de Bifenilo , Modelos Animais de Doenças , Hipertensão Essencial , Feminino , Quinase 4 de Receptor Acoplado a Proteína G/biossíntese , Células HEK293 , Histona Desacetilase 1/metabolismo , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Immunoblotting , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 1 de Angiotensina/biossíntese , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Curr Hypertens Rev ; 11(1): 49-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26028245

RESUMO

Salt sensitivity is estimated to be present in 51% of the hypertensive and 26% of the normotensive populations. The individual blood pressure response to salt is heterogeneous and possibly related to inherited susceptibility. Although the mechanisms underlying salt sensitivity are complex and not well understood, genetics can help to determine the blood response to salt intake. So far only a few genes have been found to be associated with salt-sensitive hypertension using candidate gene association studies. The kidney is critical to overall fluid and electrolyte balance and long-term regulation of blood pressure. Thus, the pathogenesis of salt sensitivity must involve a derangement in renal NaCl handling: an inability to decrease renal sodium transport and increase sodium excretion in the face of an increase in NaCl load that could be caused by aberrant counter-regulatory natriuretic/antinatriuretic pathways. We review here the literature regarding the gene variants associated with salt-sensitive hypertension and how the presence of these gene variants influences the response to antihypertensive therapy.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Estudos de Associação Genética , Hipertensão/genética , Rim/fisiopatologia , Sódio na Dieta/farmacologia , Regulação da Expressão Gênica/fisiologia , Variação Genética , Humanos , Polimorfismo Genético , Espécies Reativas de Oxigênio/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia
18.
Endocrinology ; 156(6): 2211-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25825816

RESUMO

Sorting nexin 5 (SNX5) belongs to the SNX family, which is composed of a diverse group of proteins that mediate trafficking of plasma membrane proteins, receptors, and transporters. SNX5 is important in the resensitization of the dopamine D1-like receptor (D1R). D1R is uncoupled from its effector proteins in hypertension and diabetes, and treatment of diabetes restores D1R function and insulin receptor (IR) expression. We tested the hypothesis that the D1R and SNX5 regulate IR by studying the expression, distribution, dynamics, and functional consequences of their interaction in human renal proximal tubule cells (hRPTCs). D1R, SNX5, and IR were expressed and colocalized in the brush border of RPTs. Insulin promoted the colocalization of SNX5 and IR at the perinuclear area of hRPTCs. Unlike SNX5, the D1R colocalized and coimmunoprecipitated with IR, and this interaction was enhanced by insulin. To evaluate the role of SNX5 and D1R on IR signaling, we silenced via RNA interference the endogenous expression of SNX5 or the D1R gene DRD1 in hRPTCs. We observed a decrease in IR expression and abundance of phosphorylated IR substrate and phosphorylated protein kinase B, which are crucial components of the IR signal transduction pathway. Our data indicate that SNX5 and D1R are necessary for normal IR expression and activity. It is conceivable that D1R and SNX5 may interact to increase the sensitivity to insulin via a positive regulation of IR and insulin signaling.


Assuntos
Túbulos Renais Proximais/citologia , Receptor de Insulina/metabolismo , Receptores de Dopamina D1/metabolismo , Nexinas de Classificação/metabolismo , Western Blotting , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Imunoprecipitação , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Insulina/genética , Receptores de Dopamina D1/genética , Nexinas de Classificação/genética
20.
Curr Hypertens Rev ; 11(1): 49-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28392754

RESUMO

Salt sensitivity is estimated to be present in 51% of the hypertensive and 26% of the normotensive populations. The individual blood pressure response to salt is heterogeneous and possibly related to inherited susceptibility. Although the mechanisms underlying salt sensitivity are complex and not well understood, genetics can help to determine the blood response to salt intake. So far only a few genes have been found to be associated with salt-sensitive hypertension using candidate gene association studies. The kidney is critical to overall fluid and electrolyte balance and long-term regulation of blood pressure. Thus, the pathogenesis of salt sensitivity must involve a derangement in renal NaCl handling: an inability to decrease renal sodium transport and increase sodium excretion in the face of an increase in NaCl load that could be caused by aberrant counter-regulatory natriuretic/antinatriuretic pathways. We review here the literature regarding the gene variants associated with salt-sensitive hypertension and how the presence of these gene variants influences the response to antihypertensive therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...