Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 20(8): 1825-1836, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38566318

RESUMO

HIV-1 entry into CD4+ T lymphocytes relies on the viral and cellular membranes' fusion, leading to viral capsid delivery in the target cell cytoplasm. Atg8/LC3B conjugation to lipids, process named Atg8ylation mainly studied in the context of macroautophagy/autophagy, occurs transiently in the early stages of HIV-1 replication in CD4+ T lymphocytes. Despite numerous studies investigating the HIV-1-autophagy interplays, the Atg8ylation impact in these early stages of infection remains unknown. Here we found that HIV-1 exposure leads to the rapid LC3B enrichment toward the target cell plasma membrane, in close proximity with the incoming viral particles. Furthermore, we demonstrated that Atg8ylation is a key event facilitating HIV-1 entry in target CD4+ T cells. Interestingly, this effect is independent of canonical autophagy as ATG13 silencing does not prevent HIV-1 entry. Together, our results provide an unconventional role of LC3B conjugation subverted by HIV-1 to achieve a critical step of its replication cycle.Abbreviations: BafA1: bafilomycin A1; BlaM: beta-lactamase; CD4+ TL: CD4+ T lymphocytes; PtdIns3K-BECN1 complex: BECN1-containing class III phosphatidylinositol 3-kinase complex; Env: HIV-1 envelope glycoproteins; HIV-1: type 1 human immunodeficiency virus; PM: plasma membrane; PtdIns3P: phosphatidylinositol-3-phosphate; VLP: virus-like particle.


Assuntos
Autofagia , Linfócitos T CD4-Positivos , HIV-1 , Proteínas Associadas aos Microtúbulos , Internalização do Vírus , HIV-1/fisiologia , HIV-1/metabolismo , Humanos , Autofagia/fisiologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Proteínas Associadas aos Microtúbulos/metabolismo , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Replicação Viral/fisiologia , Membrana Celular/metabolismo
2.
Nat Commun ; 15(1): 2235, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472173

RESUMO

Intracellular pathogens develop elaborate mechanisms to survive within the hostile environments of host cells. Theileria parasites infect bovine leukocytes and cause devastating diseases in cattle in developing countries. Theileria spp. have evolved sophisticated strategies to hijack host leukocytes, inducing proliferative and invasive phenotypes characteristic of cell transformation. Intracellular Theileria parasites secrete proteins into the host cell and recruit host proteins to induce oncogenic signaling for parasite survival. It is unknown how Theileria parasites evade host cell defense mechanisms, such as autophagy, to survive within host cells. Here, we show that Theileria annulata parasites sequester the host eIF5A protein to their surface to escape elimination by autophagic processes. We identified a small-molecule compound that reduces parasite load by inducing autophagic flux in host leukocytes, thereby uncoupling Theileria parasite survival from host cell survival. We took a chemical genetics approach to show that this compound induced host autophagy mechanisms and the formation of autophagic structures via AMPK activation and the release of the host protein eIF5A which is sequestered at the parasite surface. The sequestration of host eIF5A to the parasite surface offers a strategy to escape elimination by autophagic mechanisms. These results show how intracellular pathogens can avoid host defense mechanisms and identify a new anti-Theileria drug that induces autophagy to target parasite removal.


Assuntos
Parasitos , Theileria , Theileriose , Animais , Bovinos , Theileria/genética , Theileriose/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Transdução de Sinais
3.
Commun Biol ; 5(1): 1253, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380082

RESUMO

Theileria parasites are responsible for devastating cattle diseases, causing major economic losses across Africa and Asia. Theileria spp. stand apart from other apicomplexa parasites by their ability to transform host leukocytes into immortalized, hyperproliferating, invasive cells that rapidly kill infected animals. The emergence of resistance to the theilericidal drug Buparvaquone raises the need for new anti-Theileria drugs. We developed a microscopy-based screen to reposition drugs from the open-access Medicines for Malaria Venture (MMV) Pathogen Box. We show that Trifloxystrobin (MMV688754) selectively kills lymphocytes or macrophages infected with Theileria annulata or Theileria parva parasites. Trifloxystrobin treatment reduced parasite load in vitro as effectively as Buparvaquone, with similar effects on host gene expression, cell proliferation and cell cycle. Trifloxystrobin also inhibited parasite differentiation to merozoites (merogony). Trifloxystrobin inhibition of parasite survival is independent of the parasite TaPin1 prolyl isomerase pathway. Furthermore, modeling studies predicted that Trifloxystrobin and Buparvaquone could interact distinctly with parasite Cytochrome B and we show that Trifloxystrobin was still effective against Buparvaquone-resistant cells harboring TaCytB mutations. Our study suggests that Trifloxystrobin could provide an effective alternative to Buparvaquone treatment and represents a promising candidate for future drug development against Theileria spp.


Assuntos
Antiprotozoários , Parasitos , Theileria annulata , Bovinos , Animais , Antiprotozoários/farmacologia , Theileria annulata/genética
4.
Nat Commun ; 12(1): 3221, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050145

RESUMO

Lysine methylation on histone tails impacts genome regulation and cell fate determination in many developmental processes. Apicomplexa intracellular parasites cause major diseases and they have developed complex life cycles with fine-tuned differentiation events. Yet, apicomplexa genomes have few transcription factors and little is known about their epigenetic control systems. Tick-borne Theileria apicomplexa species have relatively small, compact genomes and a remarkable ability to transform leucocytes in their bovine hosts. Here we report enriched H3 lysine 18 monomethylation (H3K18me1) on the gene bodies of repressed genes in Theileria macroschizonts. Differentiation to merozoites (merogony) leads to decreased H3K18me1 in parasite nuclei. Pharmacological manipulation of H3K18 acetylation or methylation impacted parasite differentiation and expression of stage-specific genes. Finally, we identify a parasite SET-domain methyltransferase (TaSETup1) that can methylate H3K18 and represses gene expression. Thus, H3K18me1 emerges as an important epigenetic mark which controls gene expression and stage differentiation in Theileria parasites.


Assuntos
Repressão Epigenética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histonas/metabolismo , Estágios do Ciclo de Vida/genética , Theileria/crescimento & desenvolvimento , Acetilação/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Galinhas , Sequenciamento de Cromatina por Imunoprecipitação , Repressão Epigenética/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas de Insetos/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Lisina/metabolismo , Metilação/efeitos dos fármacos , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Metiltransferases/metabolismo , Mutagênese Sítio-Dirigida , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Theileria/genética , Theileriose/tratamento farmacológico , Theileriose/parasitologia , Tranilcipromina/farmacologia , Tranilcipromina/uso terapêutico
5.
Semin Immunopathol ; 42(2): 215-226, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32002610

RESUMO

Intracellular pathogens need to develop sophisticated mechanisms to survive and thrive in the hostile environment within host cells. Unicellular, eukaryotic parasites from the Apicomplexa phylum have become masters of manipulating their host cells, exploiting signaling, and metabolic pathways to hijack host gene expression to their own advantage. These intracellular parasites have developed a wide range of strategies that affect transcriptional machineries and epigenetic events in the host cell nucleus. In recent years, many laboratories have risen to the challenge of studying the epigenetics of host-pathogen interactions with the hope that unraveling the complexity of the mechanisms involved will provide important insights into parasitism and provide clues to fight infection. In this review, we survey some of these many strategies that Apicomplexan parasites employ to hijack their hosts, including inducing epigenetic enzymes, secreting epigenators into host cells, sequestering host signaling proteins, and co-opting non-coding RNAs to change gene and protein expression. We cite selected examples from the literature on Apicomplexa parasites (including Toxoplasma, Theileria, and Cryptosporidium) to highlight the success of these parasitic processes. We marvel at the effectiveness of the strategies that these pathogens have evolved and wonder what mysteries lie ahead in exploring the epigenetics of host-parasite interactions.


Assuntos
Apicomplexa , Expressão Gênica , Interações Hospedeiro-Parasita/genética , Animais , Cryptosporidium , Humanos , Theileria , Toxoplasma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA