Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35337163

RESUMO

Cannabidiol (CBD), a major non-psychotropic component of cannabis, is receiving growing attention as a potential anticancer agent. CBD suppresses the development of cancer in both in vitro (cancer cell culture) and in vivo (xenografts in immunodeficient mice) models. For critical evaluation of the advances of CBD on its path from laboratory research to practical application, in this review, we wish to call the attention of scientists and clinicians to the following issues: (a) the biological effects of CBD in cancer and healthy cells; (b) the anticancer effects of CBD in animal models and clinical case reports; (c) CBD's interaction with conventional anticancer drugs; (d) CBD's potential in palliative care for cancer patients; (e) CBD's tolerability and reported side effects; (f) CBD delivery for anticancer treatment.

2.
Front Cell Dev Biol ; 10: 811479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237599

RESUMO

The G-protein-coupled estrogen receptor (GPER) mediates non-genomic action of estrogen. Due to its differential expression in some tumors as compared to the original healthy tissues, the GPER has been proposed as a therapeutic target. Accordingly, the non-steroidal GPER agonist G-1, which has often demonstrated marked cytotoxicity in experimental models, has been suggested as a novel anticancer agent for several sensitive tumors. We recently revealed that cell lines derived from acute T-cell (query) lymphoblastic leukemia (T-ALL) express the GPER. Here, we address the question whether G-1 is cytotoxic to T-ALL. We have shown that G-1 causes an early rise of intracellular Ca2+, arrests the cell cycle in G2/M, reduces viability, and provokes apoptosis in T-ALL cell lines. Importantly, G-1 caused destabilization and depolymerization of microtubules. We assume that it is a disturbance of the cytoskeleton that causes G-1 cytotoxic and cytostatic effects in our model. The observed cytotoxic effects, apparently, were not triggered by the interaction of G-1 with the GPER as pre-incubation with the highly selective GPER antagonist G-36 was ineffective in preventing the cytotoxicity of G-1. However, G-36 prevented the intracellular Ca2+ rise provoked by G-1. Finally, G-1 showed only a moderate negative effect on the activation of non-leukemic CD4+ lymphocytes. We suggest G-1 as a potential antileukemic drug.

3.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445394

RESUMO

Cytotoxic effects of cannabidiol (CBD) and tamoxifen (TAM) have been observed in several cancer types. We have recently shown that CBD primarily targets mitochondria, inducing a stable mitochondrial permeability transition pore (mPTP) and, consequently, the death of acute lymphoblastic leukemia (T-ALL) cells. Mitochondria have also been documented among cellular targets for the TAM action. In the present study we have demonstrated a synergistic cytotoxic effect of TAM and CBD against T-ALL cells. By measuring the mitochondrial membrane potential (ΔΨm), mitochondrial calcium ([Ca2+]m) and protein-ligand docking analysis we determined that TAM targets cyclophilin D (CypD) to inhibit mPTP formation. This results in a sustained [Ca2+]m overload upon the consequent CBD administration. Thus, TAM acting on CypD sensitizes T-ALL to mitocans such as CBD by altering the mitochondrial Ca2+ homeostasis.


Assuntos
Cálcio/metabolismo , Canabidiol/farmacologia , Peptidil-Prolil Isomerase F/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Tamoxifeno/farmacologia , Linhagem Celular Tumoral , Peptidil-Prolil Isomerase F/química , Sinergismo Farmacológico , Homeostase/efeitos dos fármacos , Humanos , Células Jurkat , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Conformação Proteica
4.
Eur J Pharmacol ; 899: 174026, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722592

RESUMO

Riluzole is an anticonvulsant drug also used to treat the amyotrophic lateral sclerosis and major depressive disorder. This compound has antiglutamatergic activity and is an important multichannel blocker. However, little is known about its actions on the Kv4.2 channels, the molecular correlate of the A-type K+ current (IA) and the fast transient outward current (Itof). Here, we investigated the effects of riluzole on Kv4.2 channels transiently expressed in HEK-293 cells. Riluzole inhibited Kv4.2 channels with an IC50 of 190 ± 14 µM and the effect was voltage- and frequency-independent. The activation rate of the current (at +50 mV) was not affected by the drug, nor the voltage dependence of channel activation, but the inactivation rate was accelerated by 100 and 300 µM riluzole. When Kv4.2 channels were maintained at the closed state, riluzole incubation induced a tonic current inhibition. In addition, riluzole significantly shifted the voltage dependence of inactivation to hyperpolarized potentials without affecting the recovery from inactivation. In the presence of the drug, the closed-state inactivation was significantly accelerated, and the percentage of inactivated channels was increased. Altogether, our findings indicate that riluzole inhibits Kv4.2 channels mainly affecting the closed and closed-inactivated states.


Assuntos
Bloqueadores dos Canais de Potássio/farmacologia , Riluzol/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Células HEK293 , Humanos , Ativação do Canal Iônico , Potenciais da Membrana , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Fatores de Tempo
5.
Biochem Pharmacol ; 152: 264-271, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29621539

RESUMO

Amitriptyline (AMIT) is a compound widely prescribed for psychiatric and non-psychiatric conditions including depression, migraine, chronic pain, and anorexia. However, AMIT has been associated with risks of cardiac arrhythmia and sudden death since it can induce prolongation of the QT interval on the surface electrocardiogram and torsade de pointes ventricular arrhythmia. These complications have been attributed to the inhibition of the rapid delayed rectifier potassium current (IKr). The slow delayed rectifier potassium current (IKs) is the main repolarizing cardiac current when IKr is compromised and it has an important role in cardiac repolarization at fast heart rates induced by an elevated sympathetic tone. Therefore, we sought to characterize the effects of AMIT on Kv7.1/KCNE1 and homomeric Kv7.1 channels expressed in HEK-293H cells. Homomeric Kv7.1 and Kv7.1/KCNE1 channels were inhibited by AMIT in a concentration-dependent manner with IC50 values of 8.8 ±â€¯2.1 µM and 2.5 ±â€¯0.8 µM, respectively. This effect was voltage-independent for both homomeric Kv7.1 and Kv7.1/KCNE1 channels. Moreover, mutation of residues located on the P-loop and S6 domain along with molecular docking, suggest that T312, I337 and F340 are the most important molecular determinants for AMIT-Kv7.1 channel interaction. Our experimental findings and modeling suggest that AMIT preferentially blocks the open state of Kv7.1/KCNE1 channels by interacting with specific residues that were previously reported to be important for binding of other compounds, such as chromanol 293B and the benzodiazepine L7.


Assuntos
Amitriptilina/farmacologia , Canal de Potássio KCNQ1/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Potenciais de Ação , Amitriptilina/química , Antidepressivos Tricíclicos/química , Antidepressivos Tricíclicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Canal de Potássio KCNQ1/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA