Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 1159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681345

RESUMO

The main ingredients of chocolate are usually cocoa powder, cocoa butter, and sugar. Both the powder and the butter are extracted from the beans of the cacao tree (Theobroma cacao L.). The cocoa butter represents the fat in the beans and possesses a unique fatty acid profile that results in chocolate's characteristic texture and mouthfeel. Here, we used a linkage mapping population and phenotypic data of 3,292 samples from 420 progeny which led to the identification of 27 quantitative trait loci (QTLs) for fatty acid composition and six QTLs for fat content. Progeny showed extensive variation in fat levels and composition, with the level of palmitic acid negatively correlated to the sum of stearic acid, oleic acid, and linoleic acid. A major QTL explaining 24% of the relative level of palmitic acid was mapped to the distal end of chromosome 4, and those higher levels of palmitic acid were associated with the presence of a haplotype from the "TSH 1188" parent in the progeny. Within this region of chromosome 4 is the Thecc1EG017405 gene, an orthologue and isoform of the stearoyl-acyl carrier protein (ACP) desaturase (SAD) gene in plants, which is involved in fatty acid biosynthesis. Besides allelic differences, we also show that climate factors can change the fatty acid composition in the beans, including a significant positive correlation between higher temperatures and the higher level of palmitic acid. Moreover, we found a significant pollen donor effect from the variety "SIAL 70" which was associated with decreased palmitic acid levels.

2.
Physiol Plant ; 150(1): 1-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23586401

RESUMO

NEP1 (necrosis- and ethylene-inducing peptide 1)-like proteins (NLPs) have been identified in a variety of taxonomically unrelated plant pathogens and share a common characteristic of inducing responses of plant defense and cell death in dicotyledonous plants. Even though some aspects of NLP action have been well characterized, nothing is known about the global range of modifications in proteome and metabolome of NLP-treated plant cells. Here, using both proteomic and metabolomic approaches we were able to identify the global molecular and biochemical changes in cells of Nicotiana benthamiana elicited by short-term treatment with MpNEP2, a NLP of Moniliophthora perniciosa, the basidiomycete responsible for the witches' broom disease on cocoa (Theobroma cacao L.). Approximately 100 protein spots were collected from 2-DE gels in each proteome, with one-third showing more than twofold differences in the expression values. Fifty-three such proteins were identified by mass spectrometry (MS)/MS and mapped into specific metabolic pathways and cellular processes. Most MpNEP2 upregulated proteins are involved in nucleotide-binding function and oxidoreductase activity, whereas the downregulated proteins are mostly involved in glycolysis, response to stress and protein folding. Thirty metabolites were detected by gas spectrometry (GC)/MS and semi-quantified, of which eleven showed significant differences between the treatments, including proline, alanine, myo-inositol, ethylene, threonine and hydroxylamine. The global changes described affect the reduction-oxidation reactions, ATP biosynthesis and key signaling molecules as calcium and hydrogen peroxide. These findings will help creating a broader understanding of NLP-mediated cell death signaling in plants.


Assuntos
Agaricales/fisiologia , Proteínas Fúngicas/fisiologia , Interações Hospedeiro-Parasita , Metaboloma/fisiologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Células Cultivadas , Ontologia Genética , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Proteínas de Plantas/fisiologia , Proteoma/fisiologia , Nicotiana/citologia
3.
BMC Microbiol ; 9: 158, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19653910

RESUMO

BACKGROUND: The hemibiotrophic fungus Moniliophthora perniciosa is the causal agent of Witches' broom, a disease of Theobroma cacao. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease. RESULTS: Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order Agaricales. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage of M. perniciosa, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a second in basidiomata, confirming their distinctiveness. The number of transcripts of the gene for plerototolysin B increased in reddish-pink mycelium and indicated an activation of the initial basidiomata production even at this culturing stage. Expression of the glucose transporter gene increased in mycelium after the stress, coinciding with a decrease of adenylate cyclase gene transcription. This indicated that nutrient uptake can be an important signal to trigger fruiting in this fungus. CONCLUSION: The identification of genes with increased expression in this phase of the life cycle of M. perniciosa opens up new possibilities of controlling fungus spread as well as of genetic studies of biological processes that lead to basidiomycete fruiting. This is the first comparative morphologic study of the early development both in vivo and in vitro of M. perniciosa basidiomata and the first description of genes expressed at this stage of the fungal life cycle.


Assuntos
Agaricales/crescimento & desenvolvimento , Agaricales/genética , Perfilação da Expressão Gênica , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Cacau/microbiologia , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Genes Fúngicos , Genoma Fúngico , Proteínas Hemolisinas/genética , Dados de Sequência Molecular , Micélio/genética , Micélio/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , RNA Fúngico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...