Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Spine Deform ; 12(3): 595-602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38451404

RESUMO

PURPOSE: To optimize the biomechanical performance of S2AI screw fixation using a genetic algorithm (GA) and patient-specific finite element analysis integrating bone mechanical properties. METHODS: Patient-specific pelvic finite element models (FEM), including one normal and one osteoporotic model, were created from bi-planar multi-energy X-rays (BMEXs). The genetic algorithm (GA) optimized screw parameters based on bone mass quality (BM method) while a comparative optimization method maximized the screw corridor radius (GEO method). Biomechanical performance was evaluated through simulations, comparing both methods using pullout and toggle tests. RESULTS: The optimal screw trajectory using the BM method was more lateral and caudal with insertion angles ranging from 49° to 66° (sagittal plane) and 29° to 35° (transverse plane). In comparison, the GEO method had ranges of 44° to 54° and 24° to 30° respectively. Pullout forces (PF) using the BM method ranged from 5 to 18.4 kN, which were 2.4 times higher than the GEO method (2.1-7.7 kN). Toggle loading generated failure forces between 0.8 and 10.1 kN (BM method) and 0.9-2.9 kN (GEO method). The bone mass surrounding the screw representing the fitness score and PF of the osteoporotic case were correlated (R2 > 0.8). CONCLUSION: Our study proposed a patient-specific FEM to optimize the S2AI screw size and trajectory using a robust BM approach with GA. This approach considers surgical constraints and consistently improves fixation performance.


Assuntos
Algoritmos , Parafusos Ósseos , Análise de Elementos Finitos , Ílio , Humanos , Fenômenos Biomecânicos , Ílio/cirurgia , Sacro/cirurgia , Sacro/diagnóstico por imagem , Fusão Vertebral/métodos , Fusão Vertebral/instrumentação , Feminino , Osteoporose/cirurgia , Adulto , Masculino
2.
J Mech Behav Biomed Mater ; 150: 106350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171139

RESUMO

As a daily physiological mechanism in bone, microdamage accumulation dissipates energy and helps to prevent fractures. However, excessive damage accumulation might bring adverse effects to bone mechanical properties, which is especially problematic among the osteoporotic and osteopenic patients treated by bisphosphonates. Some pre-clinical studies in the literature applied forelimb loading models to produce well-controlled microdamage in cortical bone. Ovariectomized animals were also extensively studied to assimilate human conditions of estrogen-related bone loss. In the present study, we combined both experimental models to investigate microdamage accumulation in the context of osteopenia and zoledronate treatment. Three-month-old normal and ovariectomized rats treated by saline or zoledronate underwent controlled compressive loading on their right forelimb to create in vivo microdamage, which was then quantified by barium sulfate contrast-enhanced micro-CT imaging. Weekly in vivo micro-CT scans were taken to evaluate bone (re)modeling and to capture microstructural changes over time. After sacrifice, three-point-bending tests were performed to assess bone mechanical properties. Results show that the zoledronate treatment can reduce cortical microdamage accumulation in ovariectomized rats, which might be explained by the enhancement of several bone structural properties such as ultimate force, yield force, cortical bone area and volume. The rats showed increased bone formation volume and surface after the generation of microdamage, especially for the normal and the ovariectomized groups. Woven bone formation was also observed in loaded ulnae, which was most significant in ovariectomized rats. Although all the rats showed strong correlations between periosteal bone formation and microdamage accumulation, the correlation levels were lower for the zoledronate-treated groups, potentially because of their lower levels of microdamage. The present study provides insights to further investigations of pharmaceutical treatments for osteoporosis and osteopenia. The same experimental concept can be applied in future studies on microdamage and drug testing.


Assuntos
Difosfonatos , Osteoporose , Ratos , Humanos , Animais , Lactente , Ácido Zoledrônico/farmacologia , Difosfonatos/farmacologia , Ulna/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Osteoporose/tratamento farmacológico , Microtomografia por Raio-X
3.
Artigo em Inglês | MEDLINE | ID: mdl-37975562

RESUMO

The increasing prevalence of adult spinal deformity requires long spino-pelvic instrumentation, but pelvic fixation faces challenges due to distal forces and reduced bone quality. Bi-planar multi-energy X-rays (BMEX) were used to develop a patient-specific finite element model (FEM) for evaluating pelvic fixation. Calibration involved 10 patients, and an 81-year-old female test case was used for FEM customization and pullout simulation validation. Calibration yielded a root mean square error of 74.7 mg/cm3 for HU. The simulation accurately replicated the experimental pullout test with a force of 565 N, highlighting the method's potential for optimizing biomechanical performance for pelvic fixation.

4.
J Musculoskelet Neuronal Interact ; 23(3): 316-327, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37654217

RESUMO

OBJECTIVE: To develop a methodology to improve the representation of the mechanical properties of a vertebral finite element model (FEM) based on a new dual-energy (DE) imaging technology to improve pedicle screw fixation. METHODS: Bone-calibrated radiographs were generated with dual-energy imaging technology in order to estimate the mechanical properties of the trabecular bone. Properties were included in regions of interest in four vertebral FEMs representing heterogeneity and homogeneity, as a realistic and reference model, respectively. Biomechanical parameters were measured during screw pull-out testing to evaluate pedicle screw fixation. RESULTS: Simulations with property distributions deduced from dual-energy imaging characterization (heterogeneous models) induced an increase in biomechanical indicators versus with a homogeneous representation, implying different behaviors for the subject-specific models. CONCLUSION: The presented methodology allows a patient-specific representation of bone quality in a FEM using new DE imaging technology. Consideration of individualized bone distribution in a spinal FEM improves the perspective of orthopedic surgical planning over otherwise underestimated results using a homogeneous representation.


Assuntos
Procedimentos Ortopédicos , Parafusos Pediculares , Humanos , Coluna Vertebral , Osso Esponjoso
5.
Genes (Basel) ; 14(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37239471

RESUMO

Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional spinal deformity. The incidence of AIS in females is 8.4 times higher than in males. Several hypotheses on the role of estrogen have been postulated for the progression of AIS. Recently, Centriolar protein gene POC5 (POC5) was identified as a causative gene of AIS. POC5 is a centriolar protein that is important for cell cycle progression and centriole elongation. However, the hormonal regulation of POC5 remains to be determined. Here, we identify POC5 as an estrogen-responsive gene under the regulation of estrogen receptor ERα in normal osteoblasts (NOBs) and other ERα-positive cells. Using promoter activity, gene, and protein expression assays, we found that the POC5 gene was upregulated by the treatment of osteoblasts with estradiol (E2) through direct genomic signaling. We observed different effects of E2 in NOBs and mutant POC5A429V AIS osteoblasts. Using promoter assays, we identified an estrogen response element (ERE) in the proximal promoter of POC5, which conferred estrogen responsiveness through ERα. The recruitment of ERα to the ERE of the POC5 promoter was also potentiated by estrogen. Collectively, these findings suggest that estrogen is an etiological factor in scoliosis through the deregulation of POC5.


Assuntos
Proteínas de Transporte , Receptor alfa de Estrogênio , Escoliose , Humanos , Proteínas de Transporte/genética , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Escoliose/genética , Escoliose/metabolismo
6.
Biomech Model Mechanobiol ; 22(4): 1145-1162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37000273

RESUMO

Physical exercise is important for musculoskeletal development during puberty, which builds bone mass foundation for later in life. However, strenuous levels of training might bring adverse effects to bone health, reducing longitudinal bone growth. Animal models with various levels of physical exercise were largely used to provide knowledge to clinical settings. Experiments from our previous studies applied different levels of mechanical loading on rat tibia during puberty accompanied by weekly in vivo micro-CT scans. In the present article, we apply 3D image registration-based methods to retrospectively analyze part of the previously acquired micro-CT data. Longitudinal bone growth, growth plate thickness, and cortical bone (re)modeling were evaluated from rats' age of 28-77 days. Our results show that impact loading inhibited proximal bone growth throughout puberty. We hypothesize that impact loading might bring different growth alterations to the distal and proximal growth plates. High impact loading might lead to pathological consequence of osteochondrosis and catch-up growth due to growth inhibition. Impact loading also increased cortical bone (re)modeling before and after the peak proximal bone growth period of young rats, of which the latter case might be caused by the shift from modeling to remodeling as the dominant activity toward the end of rat puberty. We confirm that the tibial endosteum is more mechano-sensitive than the periosteum in response to mechanical loading. To our knowledge, this is the first study to follow up bone growth and bone (re)modeling of young rats throughout the entire puberty with a weekly time interval.


Assuntos
Desenvolvimento Ósseo , Osso e Ossos , Ratos , Animais , Estudos Retrospectivos , Desenvolvimento Ósseo/fisiologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/fisiologia , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Microtomografia por Raio-X , Remodelação Óssea/fisiologia
7.
J Mech Behav Biomed Mater ; 137: 105540, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327650

RESUMO

INTRODUCTION: One of the current approaches to improve our understanding of osteoporosis is to study the development of bone microdamage under mechanical loading. The current practice for evaluating bone microdamage is to quantify damage volume from images of bone samples stained with a contrast agent, often composed of toxic heavy metals and requiring long tissue preparation. This work aims to evaluate the potential of linear microcracks detection and segmentation in trabecular bone samples using well-known deep learning models, namely YOLOv4 and Unet, applied on microCT images. METHODS: Six trabecular bovine bone cylinders underwent compression until ultimate stress and were subsequently imaged with a microCT at a resolution of 1.95 µm. Two of these samples (samples 1 and 2) were then stained using barium sulfate (BaSO4) and imaged again. The unstained samples (samples 3-6) were used to train two neural networks YOLOv4 to detect regions with microdamage further combined with Unet to segment the microdamage at the pixel level in the detected regions. Four different model versions of YOLOv4 were compared using the average Intersection over Union (IoU) and the mean average precision (mAP). The performance of Unet was also measured using two segmentation metrics, the Dice Score and the Intersection over Union (IoU). A qualitative comparison was finally done between the deep learning and the contrast agent approaches. RESULTS: Among the four versions of YOLOv4, the YOLOv4p5 model resulted in the best performance with an average IoU of 45,32% and 51,12% and a mAP of 28.79% and 46.22%, respectively for samples 1 and 2. The segmentation performance of Unet provided better IoU and DICE score on sample 2 compared to sample 1. The poorer performance of the test on sample 1 could be explained by its poorer contrast to noise ratio (CNR). Indeed, sample 1 resulted in a CNR of 7,96, which was worse than the average CNR in the training samples, while sample 2 resulted in a CNR of 10,08. The qualitative comparison between the contrast agent and the deep learning segmentation showed that two different regions were segmented by the two techniques. Deep learning is segmenting the region inside the cracks while the contrast agent segments the region around it or even regions with no visible damage. CONCLUSION: The combination of YOLOv4 for microdamage detection with Unet for damage segmentation showed a potential for the detection and segmentation of microdamage in trabecular bone. The accuracy of both neural networks achieved in this work is acceptable considering it is their first application in this specific field and the amount of data was limited. Even if the errors from both neural networks are accumulated, the two-steps approach is faster than the semantic segmentation of the whole volume.


Assuntos
Aprendizado Profundo , Bovinos , Animais , Microtomografia por Raio-X , Osso Esponjoso/diagnóstico por imagem , Meios de Contraste , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
8.
Am J Orthod Dentofacial Orthop ; 162(6): e319-e327, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36216621

RESUMO

INTRODUCTION: Vitamin D (VitD) maintains bone health and may influence orthodontic tooth movement (OTM). The objective was to evaluate the VitD effect on bone morphometry and the rate and stability of OTM. METHODS: Thirty-two male Sprague Dawley rats were assigned into 2 experimental groups, treated with VitD by gavage (systemic) or injection (local), and 2 respective control groups treated with phosphate-buffered saline for 47 days. OTM was performed for 7 days with a nickel-titanium coil bonded between the maxillary first molar and incisors. Microcomputed tomography scanning was performed at 5 time points: before administration of VitD, the start of OTM, the end of OTM, 7 days post-OTM, and 30 days post-OTM. The rate and stability of OTM were assessed. Bone morphometry was analyzed by bone mineral density, bone volume/total volume, total porosity, trabecular pattern factor, structure model index, and connectivity density. RESULTS: The systemic VitD group showed a lower OTM rate and a lower relapse than the control (P <0.05). It also demonstrated increased bone mineral density, bone volume/total volume, and a decrease in total porosity (P <0.05). The bone structure appeared more fragmented and presented a lower connectivity density than the control (P <0.05). No statistical difference was found between VitD local administration and the other groups for the rate and stability of OTM or bone morphometry. CONCLUSIONS: The systemic administration of VitD caused a decrease in the OTM rate by generating more bone resistance but also contributed to a lower relapse with a higher bone mineral density.


Assuntos
Técnicas de Movimentação Dentária , Vitamina D , Ratos , Masculino , Animais , Técnicas de Movimentação Dentária/métodos , Microtomografia por Raio-X/métodos , Vitamina D/farmacologia , Ratos Sprague-Dawley , Recidiva , Osteoclastos
9.
J Mech Behav Biomed Mater ; 125: 104883, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678619

RESUMO

During thoracic operations, surgical staplers resect cancerous tumors and seal the spared lung. However, post-operative air leaks are undesirable clinical consequences: staple legs wound lung tissue. Subsequent to this trauma, air leaks from lung tissue into the pleural space. This affects the lung's physiology and patients' recovery. The objective is to biomechanically and visually characterize porcine lung tissue with and without staples in order to gain knowledge on air leakage following pulmonary resection. Therefore, a syringe pump filled with air inflates and deflates eleven porcine lungs cyclically without exceeding 10 cmH2O of pressure. Cameras capture stereo-images of the deformed lung surface at regular intervals while a microcontroller simultaneously records the alveolar pressure and the volume of air pumped. The raw images are then used to compute tri-dimensional displacements and strains with the Digital Image Correlation method (DIC). Air bubbles originated at staple holes of inner row from exposed porcine lung tissue due to torn pleural on costal surface. Compared during inflation, left upper or lower lobe resections have similar compliance (slope of the pressure vs volume curve), which are 9% lower than healthy lung compliance. However, lower lobes statistically burst at lower pressures than upper lobes (p-value<0.046) in ex vivo conditions confirming previous clinical in vivo studies. In parallel, the lung deformed mostly in the vicinity of staple holes and presented maximum shear strain near the observed leak location. To conclude, a novel technique DIC provided concrete evidence of the post-operative air leaks biomechanics. Further studies could investigate causal relationships between the mechanical parameters and the development of an air leak.


Assuntos
Pulmão , Grampeadores Cirúrgicos , Animais , Fenômenos Biomecânicos , Biofísica , Humanos , Pleura , Suínos
10.
Bone ; 154: 116207, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547522

RESUMO

Bone growth is an essential part of skeletal development during childhood and puberty. Accurately characterizing longitudinal bone growth helps to better understand the determining factors of peak bone mass, which has impacts on bone quality later in life. Animal models were largely used to study longitudinal bone growth. However, the commonly used histology-based method is destructive and unable to follow up the growth curve of live animals in longitudinal experiments. In this study, we validated an in vivo micro-CT-based method against the histology-based method to quantify longitudinal bone growth rates of young rats non-destructively. CD (Sprague Dawley) IGS rats aged 35, 49 and 63 days received the same treatments: two series of repeated in vivo micro-CT scans on their proximal hind limb at a five-day interval, and two calcein injections separated by three days. The longitudinal bone growth rate was quantified by registering time-lapse micro-CT images in 3D, calculating the growth distance on registered images, and dividing the distance by the five-day gap. The growth rate was also evaluated by measuring the 2D distance between consecutive calcein fluorescent bands on microscopic images, divided by the three-day gap. The two methods were both validated independently with reproducible repeated measurements, where the micro-CT-based method showed higher precision. They were also validated against each other with low relative errors and a strong Pearson sample correlation coefficient (0.998), showing a significant (p < 0.0001) linear correlation between paired results. We conclude that the micro-CT-based method can serve as an alternative to the histology-based method for the quantification of longitudinal growth. Thanks to its non-invasive nature and true 3D capability, the micro-CT-based method helps to accommodate in vivo longitudinal animal studies with highly reproducible measurements.


Assuntos
Desenvolvimento Ósseo , Maturidade Sexual , Animais , Osso e Ossos/fisiologia , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X/métodos
11.
Spine Deform ; 9(5): 1267-1273, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33755927

RESUMO

PURPOSE: The fusion of the sacroiliac joint (SIJ) is the last treatment option for chronic pain resulting from sacroiliitis. With the various implant systems available, there are different possible surgical strategies in terms of the type and number of implants and trajectories. The aim was to quantify the effect of the number of cylindrical threaded implants on SIJ stabilization. METHODS: Six cadaveric pelvises were embedded in resin simulating a double-leg stance. Compression loads were applied to the sacral plate. The pelvises were tested non-instrumented and instrumented progressively with up to three cylindrical threaded implants (12-mm diameter, 60-mm length) with a posterior oblique trajectory. Vertical (VD) and angular (AD) displacements of the SIJ were measured locally using high-precision cameras and digital image correlation. RESULTS: Compared to the non-instrumented initial state, instrumentation with one implant significantly decreased the VD (- 24% ± 15%, p = 0.028), while the AD decreased on average by - 9% (± 15%; p = 0.345). When compared to the one-implant configuration, adding a second implant further statistically decreased VD (- 10% ± 7%, p = 0.046) and AD (- 19% ± 15, p = 0.046). Adding a third implant did not lead to additional stabilization for VD nor AD (p > 0.5). CONCLUSION: Compared to the non-instrumented initial state, the two-implant configuration reduces both vertical and angular displacements the most, while minimizing the number of implants.


Assuntos
Articulação Sacroilíaca , Fusão Vertebral , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos , Próteses e Implantes , Articulação Sacroilíaca/cirurgia , Sacro
12.
J Orthop Res ; 39(12): 2693-2702, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33620100

RESUMO

The sacroiliac joint (SIJ) is a known pain generator that, in severe cases, may require surgical fixation to reduce intra-articular displacements and allow for arthrodesis. The objective of this computational study was to analyze how the number of implants affected SIJ stabilization with patient-specific characteristics such as the pelvic geometry and bone quality. Detailed finite element models were developed to account for three pelvises of differing anatomy. Each model was tested with a normal and low bone density (LD) under two types of loading: compression only and compression with flexion and extension moments. These models were instrumented with one to three cylindrical, threaded and fenestrated implants through a posterior oblique trajectory, requiring less muscle dissection than the more common lateral trajectory used with triangular implants. Compared with the noninstrumented pelvis, the change in range of motion (ROM) and stress distribution were used to characterize joint stabilization. Noninstrumented mobility ranged from 0.86 to 2.55 mm and from 1.37° to 6.11°. Across patient-specific characteristics, the ROM reduction with one implant varied from 3% to 21% for vertical and 15% to 47% for angular displacements. With two implants, the ROM reduction ranged from 12% to 41% for vertical and from 28% to 61% for angular displacements. Three implants, however, did not further improve the joint stability (14% to 42% for vertical and 32% to 63% for angular displacements). With respect to patient characteristics, an LD led to a decreased stabilization and a higher volume of stressed bone (>75% of yield stress). A better understanding of how patient characteristics affect the implant performance could help improve surgical planning of sacroiliac arthrodesis.


Assuntos
Articulação Sacroilíaca , Fusão Vertebral , Fenômenos Biomecânicos/fisiologia , Análise de Elementos Finitos , Humanos , Próteses e Implantes , Amplitude de Movimento Articular/fisiologia , Articulação Sacroilíaca/cirurgia , Fusão Vertebral/métodos
13.
J Biomech Eng ; 142(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32747943

RESUMO

Microcomputed tomography (micro-CT) based finite element models (FEM) are efficient tools to assess bone mechanical properties. Although they have been developed for different animal models, there is still a lack of data for growing rat long bone models. This study aimed at developing and calibrating voxel-based FEMs using micro-CT scans and experimental data. Twenty-four tibiae were extracted from rats aged 28, 56, and 84 days old (d.o.) (n = 8/group), and their stiffness values were evaluated using three-point bending tests. Prior to testing, tibiae were scanned, reconstructed, and converted into FEM composed of heterogeneous bone properties based on pixel grayscales. Three element material laws (one per group) were calibrated using back-calculation process based on experimental bending data. Two additional specimens per group were used for model verification. The calibrated rigidity-density (E-ρ) relationships were different for each group: E28 = 10,320·ρash3.45; E56 = 43,620·ρash4.41; E84 = 20,090·ρash2.0. Obtained correlations between experimental and FEM stiffness values were 0.43, 0.10, and 0.66 with root-mean-square error (RMSE) of 14.4%, 17.4%, and 15.2% for 28, 56, and 84 d.o. groups, respectively. Prediction errors were less than 13.5% for 28 and 84 d.o. groups but reached 57.1% for the 56 d.o. group. Relationships between bone physical and mechanical properties were found to change during the growth, similarly to bending stiffness values, which increased with bone development. The reduced correlation observed for the 56 d.o. group may be related to the pubescent transition at that age group. These FE models will be useful for investigation of bone behavior in growing rats.


Assuntos
Análise de Elementos Finitos , Microtomografia por Raio-X , Animais , Fenômenos Biomecânicos , Ratos , Estresse Mecânico
14.
JBMR Plus ; 4(4): e10349, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32258967

RESUMO

Bone is a unique living tissue, which responds to the mechanical stimuli regularly imposed on it. Adolescence facilitates a favorable condition for the skeleton that enables the exercise to positively influence bone architecture and overall strength. However, it is still dubious for how long the skeletal benefits gained in adolescence is preserved at adulthood. The current study aims to use a rat model to investigate the effects of in vivo low- (LI), medium- (MI), and high- (HI) intensity cyclic loadings applied during puberty on longitudinal bone development, morphometry, and biomechanics during adolescence as well as at adulthood. Forty-two young (4-week-old) male rats were randomized into control, sham, LI, MI, and HI groups. After a 5 day/week for 8 weeks cyclic loading regime applied on the right tibia, loaded rats underwent a subsequent 41-week, normal cage activity period. Right tibias were removed at 52 weeks of age, and a comprehensive assessment was performed using µCT, mechanical testing, and finite element analysis. HI and MI groups exhibited reduced body weight and food intake at the end of the loading period compared with shams, but these effects disappeared afterward. HI cyclic loading increased BMD, bone volume fraction, trabecular thickness, trabecular number, and decreased trabecular spacing after loading. All loading-induced benefits, except BMD, persisted until the end of the normal cage activity period. Moreover, HI loading induced enhanced bone area, periosteal perimeter, and moment of inertia, which remained up to the 52nd week. After the normal cage activity at adulthood, the HI group showed increased ultimate force and stress, stiffness, postyield displacement and energy, and toughness compared with the sham group. Overall, our findings suggest that even though both trabecular and cortical bone drifted through age-related changes during aging, HI cyclic loading performed during adolescence can render lifelong benefits in bone microstructure and biomechanics. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

15.
Clin Biomech (Bristol, Avon) ; 74: 118-123, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32192993

RESUMO

BACKGROUND: The sacroiliac joint is an important source of low back pain. In severe cases, sacroiliac joint fusion is used to reduce pain, but revision rates can reach 30%. The lack of initial mechanical stability may lead to pseudarthrosis, thus not alleviating the patient's symptoms. This could be due to the damage induced to the interosseous ligament during implant insertion. Decoupling instrumentation steps (drilling-tapping and implant insertion) would allow verifying this hypothesis. Moreover, no biomechanical studies have been published on sacroiliac joint fixation with an oblique lateral approach, while it has important clinical advantages over the direct lateral approach. METHODS: Eight cadaveric human pelves with both ischia embedded were tested in three sequential states: intact, drilled-tapped and instrumented with one cylindrical threaded implant with an oblique lateral trajectory. Specimens were assigned one of two insertion sites (distal point; near the posterior superior iliac spine, and proximal point; anterosuperior to the distal point) and tested in compression and flexion-extension. Vertical and angular displacements of the sacroiliac joint were measured locally using digital image correlation methods. FINDINGS: In compression, instrumentation significantly reduced vertical displacements (17% (SD 22%), P = 0.04) but no difference was found for angular displacements or flexion-extension loads (P > 0.05). Drilling-tapping did not change the stability of the sacroiliac joint (P > 0.05); there was no statistical difference between the insertion sites (P > 0.05). INTERPRETATIONS: Insertion of one implant through either the distal or proximal insertion site with an oblique lateral approach significantly reduced vertical displacements of the sacroiliac joint in compression, a predominant load of this joint. RESEARCH ETHICS COMMITTEE: Polytechnique Montreal: CÉR-1617-30.


Assuntos
Fenômenos Mecânicos , Procedimentos Ortopédicos/métodos , Articulação Sacroilíaca/cirurgia , Fenômenos Biomecânicos , Cadáver , Humanos , Ílio/cirurgia , Masculino , Pessoa de Meia-Idade , Próteses e Implantes
16.
Spine Deform ; 8(4): 585-589, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32096137

RESUMO

STUDY DESIGN: Experimental biomechanical study of pressures exerted on the epiphyseal growth plates (GP) in tethered porcine cadaveric spines. OBJECTIVES: To experimentally measure the pressure exerted on the vertebral end plates of a tethered porcine spine model. Flexible spine tethering is a novel fusionless surgical technique that aims to correct scoliotic deformities based on growth modulation due to the pressure exerted on vertebral body epiphyseal GP. The applied pressure resulting from spine tethering remains not well documented. METHODS: The ligamentous thoracic segment (T1-T14) of four 3-months old Duroc Landrace pigs (female; 22 kg, range: 18-27 kg) was positioned in lateral decubitus in a custom-made stand. Vertebra T14 was clamped but the remaining spine was free to slide horizontally. For every specimen, six configurations were tested: three or five instrumented motion segments (T5-T10 or T7-T10) with applied compression of 22, 44 or 66 N. The pressure generated on the GPs in the tethered side was measured with a thin force sensor slid either at the proximal, apex or distal levels. The data were analyzed with an ANOVA. RESULTS: The pressure was significantly different between three and five instrumented motion segments (averages of 0.76 MPa ± 0.03 and 0.60 MPa ± 0.03, respectively; p < 0.05), but the pressure exerted on each GP along the instrumented spine was not significantly different for a given number of instrumented levels. The pressure was linearly correlated to the tether tension. CONCLUSIONS: Non segmental anterior spine tethering induced similar pressures on every instrumented level regardless of the number of instrumented levels, with 21% lesser pressures with 5 motion segments. LEVEL OF EVIDENCE: Level IV.


Assuntos
Lâmina de Crescimento , Pressão , Escoliose/cirurgia , Fusão Vertebral/instrumentação , Fusão Vertebral/métodos , Vértebras Torácicas/cirurgia , Animais , Suínos
17.
Spine Deform ; 8(1): 39-44, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31981151

RESUMO

STUDY DESIGN: Experimental in vivo study of the pressure exerted on the spine of a pig by a new cyclic anterior vertebral body tethering (AVBT) prototype. OBJECTIVES: To evaluate the relationship between the tether tension and the pressures transmitted onto the vertebral end plates by a cyclic AVBT prototype. AVBT is a recent surgical technique for the treatment of pediatric scoliosis that compresses the convex side of the spine with a sustained tension, to modulate the growth to progressively correct the deformity over time. Previous studies demonstrated that cyclic compression has similar growth modulation capacity but with less detrimental effects on the integrity of the discs and growth plates. METHODS: A 3-month-old healthy Duroc pig was anesthetized and a lateral thoracotomy was performed. The T7-T10 segment was instrumented and compressed during 50 s with the load oscillating (0.2 Hz) from + 30 to - 30% of the following mean tensions: 29, 35, 40, 44, and 49 N. The pressure exerted on T9 superior vertebral end plate was monitored during the cyclic loading. Three repetitions of each test were performed. RESULTS: The resulting mean pressure exerted on the vertebral end plate was linearly correlated with the mean tether tension (r2 = 0.86). Each cycle translated in a hysteresis profile of the measured pressure and tension, with amplitudes varying between ± 11.5 and ± 29.9%. CONCLUSIONS: This experimental study documented the relationship between the tether tension and the pressure. This study confirmed the feasibility of cyclic AVBT principle to transfer varying pressures on the vertebral end plates, which is intended to control vertebral growth, while keeping the spine flexibility and preserving the health of soft tissues such as the intervertebral discs and the growth plate but remained to be further verified. LEVEL OF EVIDENCE: Level IV.


Assuntos
Lâmina de Crescimento , Procedimentos Ortopédicos/métodos , Pressão , Escoliose/cirurgia , Coluna Vertebral/cirurgia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Disco Intervertebral , Procedimentos Ortopédicos/instrumentação , Parafusos Pediculares , Maleabilidade , Escoliose/fisiopatologia , Coluna Vertebral/crescimento & desenvolvimento , Coluna Vertebral/fisiopatologia , Suínos
18.
J Cell Physiol ; 235(10): 6736-6753, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31985038

RESUMO

Advancements in research and care have contributed to increase life expectancy of individuals with cystic fibrosis (CF). With increasing age comes a greater likelihood of developing CF bone disease, a comorbidity characterized by a low bone mass and impaired bone quality, which displays gender differences in severity. However, pathophysiological mechanisms underlying this gender difference have never been thoroughly investigated. We used bone marrow-derived osteoblasts and osteoclasts from Cftr+/+ and Cftr-/- mice to examine whether the impact of CF transmembrane conductance regulator (CFTR) deletion on cellular differentiation and functions differed between genders. To determine whether in vitro findings translated into in vivo observations, we used imaging techniques and three-point bending testing. In vitro studies revealed no osteoclast-autonomous defect but impairment of osteoblast differentiation and functions and aberrant responses to various stimuli in cells isolated from Cftr-/- females only. Compared with wild-type controls, knockout mice exhibited a trabecular osteopenic phenotype that was more pronounced in Cftr-/- males than Cftr-/- females. Bone strength was reduced to a similar extent in knockout mice of both genders. In conclusion, we find a trabecular bone phenotype in Cftr-/- mice that was slightly more pronounced in males than females, which is reminiscent of the situation found in patients. However, at the osteoblast level, the pathophysiological mechanisms underlying this phenotype differ between males and females, which may underlie gender differences in the way bone marrow-derived osteoblasts behave in absence of CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Osteoblastos/metabolismo , Animais , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Diferenciação Celular/fisiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Osteoblastos/fisiologia , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Osteogênese/fisiologia , Transdução de Sinais/fisiologia
19.
Sci Rep ; 9(1): 13128, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511559

RESUMO

Physical activity is beneficial for skeletal development. However, impact sports during adolescence, leading to bone growth retardation and/or bone quality improvement, remains unexplained. This study investigated the effects of in vivo low (LI), medium (MI), and high (HI) impact loadings applied during puberty on bone growth, morphometry and biomechanics using a rat model. 4-week old rats (n = 30) were divided into control, sham, LI, MI, and HI groups. The impact was applied on the right tibiae, 5 days/week for 8 weeks mimicking walking (450 µÎµ), uphill running (850 µÎµ) and jumping (1250 µÎµ) conditions. Trabecular and cortical parameters were determined by micro-CT, bone growth rate by calcein labeling and toluidine blue staining followed by histomorphometry. Bio-mechanical properties were evaluated from bending tests. HI group reduced rat body weight and food consumption compared to shams. Bone growth rate also decreased in MI and HI groups despite developing thicker hypertrophic and proliferative zone heights. HI group showed significant increment in bone mineral density, trabecular thickness, cortical and total surface area. Ultimate load and stiffness were also increased in MI and HI groups. We conclude that impact loading during adolescence reduces bone growth moderately but improves bone quality and biomechanics at the end of the growing period.


Assuntos
Densidade Óssea , Desenvolvimento Ósseo/fisiologia , Lâmina de Crescimento/fisiologia , Condicionamento Físico Animal , Tíbia/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos , Peso Corporal , Masculino , Ratos , Ratos Sprague-Dawley
20.
Expert Rev Med Devices ; 16(4): 333-339, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30931640

RESUMO

OBJECTIVES: Limb lengthening by distraction osteogenesis is a technique widely used to treat limb length discrepancy resulting from trauma, congenital limb defects and long bone non-union. For decades, patients have resorted to the Ilizarov apparatus, prone to pin tract infections and scarring. Although implantable lengthening nails have reduced the incidence of complications, they are not applicable in pediatric patients with open growth plates. The aim of this project is to design a remote-controlled internal lengthening device suitable for implantation in children. METHODS: The proposed device has the form of an internal remote-controlled telescopic lengthening plate, screwed to the lateral side of the bone with locking screws. This is appropriate for use with pediatric patients. It has been tested on an experimental bench which has the form of a vertically sliding platform, on which were stacked weights simulating soft-tissue resistance forces. RESULTS: This internal lengthening plate generated distraction forces of up to 735 N on wooden and synthetic bones (SawbonesTM). Furthermore, it maintained a constant distraction speed over the course of the procedure for a given weight. CONCLUSIONS: This device represents a major advancement in the field of pediatric limb-lengthening, addressing a demographic gap left open by current implantable devices.


Assuntos
Osteogênese por Distração/instrumentação , Pinos Ortopédicos , Criança , Humanos , Magnetismo , Fatores de Tempo , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...