Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 598(7): 758-773, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436147

RESUMO

The human Mediator complex subunit MED25 binds transactivation domains (TADs) present in various cellular and viral proteins using two binding interfaces, named H1 and H2, which are found on opposite sides of its ACID domain. Here, we use and compare deep learning methods to characterize human MED25-TAD interfaces and assess the predicted models to published experimental data. For the H1 interface, AlphaFold produces predictions with high-reliability scores that agree well with experimental data, while the H2 interface predictions appear inconsistent, preventing reliable binding modes. Despite these limitations, we experimentally assess the validity of MED25 interface predictions with the viral transcriptional activators Lana-1 and IE62. AlphaFold predictions also suggest the existence of a unique hydrophobic pocket for the Arabidopsis MED25 ACID domain.


Assuntos
Proteínas Imediatamente Precoces , Complexo Mediador , Humanos , Complexo Mediador/genética , Complexo Mediador/metabolismo , Ativação Transcricional , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Proteínas do Envelope Viral/metabolismo , Transativadores/metabolismo , Proteínas Imediatamente Precoces/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686260

RESUMO

ETS transcription factors are a highly conserved family of proteins involved in the progression of many cancers, such as breast and prostate carcinomas, Ewing's sarcoma, and leukaemias. This significant involvement can be explained by their roles at all stages of carcinogenesis progression. Generally, their expression in tumours is associated with a poor prognosis and an aggressive phenotype. Until now, no efficient therapeutic strategy had emerged to specifically target ETS-expressing tumours. Nevertheless, there is evidence that pharmacological inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, specifically sensitises ETS-expressing cancer cells to DNA damage and limits tumour progression by leading some of the cancer cells to death. These effects result from a strong interplay between ETS transcription factors and the PARP-1 enzyme. This review summarises the existing knowledge of this molecular interaction and discusses the promising therapeutic applications.


Assuntos
Leucemia , Neoplasias da Próstata , Sarcoma de Ewing , Humanos , Poli Adenosina Difosfato Ribose , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
3.
Trends Biochem Sci ; 46(9): 705-707, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34103236

RESUMO

Cryo-electron microscopy has enabled unprecedented progress in the quest to reveal the structure of the whole transcription preinitiation complex. Four recent studies pave the way for a complete description of how transcription is initiated at near-atomic level.


Assuntos
Complexo Mediador , RNA Polimerase II , Microscopia Crioeletrônica , Complexo Mediador/genética , RNA Polimerase II/metabolismo , Transcrição Gênica
4.
J Bacteriol ; 203(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33619154

RESUMO

The two-component system BvgAS controls the virulence regulon in Bordetella pertussis BvgS is the prototype of a family of sensor histidine-kinases harboring periplasmic Venus flytrap (VFT) domains. The VFT domains are connected to the cytoplasmic kinase moiety by helical linkers separated by a Per-ARNT-Sim (PAS) domain. Antagonism between the two linkers, as one forms a coiled coil when the other is dynamic and vice versa, regulates BvgS activity. Here we solved the structure of the intervening PAS domain by X-ray crystallography. Two forms were obtained that notably differ by the connections between the PAS core domain and the flanking helical linkers. Structure-guided mutagenesis indicated that those connections participate in the regulation of BvgS activity. The PAS domain thus appears to function as a switch-facilitator module whose conformation determines the output of the system. As many BvgS homologs have similar architectures, the mechanisms unveiled here are likely to generally apply to the regulation of sensor-histidine kinases of that family.IMPORTANCEThe whooping cough agent Bordetella pertussis colonizes the human respiratory tract using virulence factors co-regulated by the sensory transduction system BvgAS. BvgS is a model for a family of sensor-kinase proteins, some of which are found in important bacterial pathogens. BvgS functions as a kinase or a phosphatase depending on external signals, which determines if B. pertussis is virulent or avirulent. Deciphering its mode of action might thus lead to new ways of fighting infections. Here we used X-ray crystallography to solve the three-dimensional structure of the domain that precedes the enzymatic moiety and identified features that regulate BvgS activity. As many sensor-kinases of the BvgS family harbor homologous domains, the mechanism unveiled here might be of general relevance.

5.
J Biol Chem ; 295(39): 13617-13629, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32737196

RESUMO

The evolutionarily conserved multiprotein Mediator complex (MED) serves as an interface between DNA-bound transcription factors (TFs) and the RNA Pol II machinery. It has been proposed that each TF interacts with a dedicated MED subunit to induce specific transcriptional responses. But are these binary partnerships sufficient to mediate TF functions? We have previously established that the Med1 Mediator subunit serves as a cofactor of GATA TFs in Drosophila, as shown in mammals. Here, we observe mutant phenotype similarities between another subunit, Med19, and the Drosophila GATA TF Pannier (Pnr), suggesting functional interaction. We further show that Med19 physically interacts with the Drosophila GATA TFs, Pnr and Serpent (Srp), in vivo and in vitro through their conserved C-zinc finger domains. Moreover, Med19 loss of function experiments in vivo or in cellulo indicate that it is required for Pnr- and Srp-dependent gene expression, suggesting general GATA cofactor functions. Interestingly, Med19 but not Med1 is critical for the regulation of all tested GATA target genes, implying shared or differential use of MED subunits by GATAs depending on the target gene. Lastly, we show a direct interaction between Med19 and Med1 by GST pulldown experiments indicating privileged contacts between these two subunits of the MED middle module. Together, these findings identify Med19/Med1 as a composite GATA TF interface and suggest that binary MED subunit-TF partnerships are probably oversimplified models. We propose several mechanisms to account for the transcriptional regulation of GATA-targeted genes.


Assuntos
Proteínas de Drosophila/metabolismo , Fatores de Transcrição GATA/metabolismo , Complexo Mediador/metabolismo , Animais , Sítios de Ligação , Proteínas de Drosophila/genética , Drosophila melanogaster , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica/genética
6.
Biochem Soc Trans ; 47(1): 399-410, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30733343

RESUMO

Mediator is a large multiprotein complex conserved in all eukaryotes that plays an essential role in transcriptional regulation. Mediator comprises 25 subunits in yeast and 30 subunits in humans that form three main modules and a separable four-subunit kinase module. For nearly 20 years, because of its size and complexity, Mediator has posed a formidable challenge to structural biologists. The first two-dimensional electron microscopy (EM) projection map of Mediator leading to the canonical view of its division in three topological modules named Head, Middle and Tail, was published in 1999. Within the last few years, optimization of Mediator purification combined with technical and methodological advances in cryo-electron microscopy (cryo-EM) have revealed unprecedented details of Mediator subunit organization, interactions with RNA polymerase II and parts of its core structure at high resolution. To celebrate the twentieth anniversary of the first Mediator EM reconstruction, we look back on the structural studies of Mediator complex from a historical perspective and discuss them in the light of our current understanding of its role in transcriptional regulation.


Assuntos
Complexo Mediador/química , Microscopia Crioeletrônica , Humanos , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Schizosaccharomyces pombe/química
7.
Nat Commun ; 9(1): 3389, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140054

RESUMO

The Mediator complex transduces regulatory information from enhancers to promoters and performs essential roles in the initiation of transcription in eukaryotes. Human Mediator comprises 26 subunits forming three modules termed Head, Middle and Tail. Here we present the 2.8 Å crystal structure of MED23, the largest subunit from the human Tail module. The structure identifies 25 HEAT repeats-like motifs organized into 5 α-solenoids. MED23 adopts an arch-shaped conformation, with an N-terminal domain (Nter) protruding from a large core region. In the core four solenoids, motifs wrap on themselves, creating triangular-shaped structural motifs on both faces of the arch, with extended grooves propagating through the interfaces between the solenoid motifs. MED23 is known to interact with several specific transcription activators and is involved in splicing, elongation, and post-transcriptional events. The structure rationalizes previous biochemical observations and paves the way for improved understanding of the cross-talk between Mediator and transcriptional activators.


Assuntos
Complexo Mediador/química , Subunidades Proteicas/química , Motivos de Aminoácidos , Cristalização , Cristalografia por Raios X , Humanos , Complexo Mediador/metabolismo , Domínios Proteicos , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/biossíntese , Anticorpos de Domínio Único/metabolismo
8.
Proteins ; 86(10): 1055-1063, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30019773

RESUMO

The Ets-1 oncoprotein is a transcription factor that promotes target gene expression in specific biological processes. Typically, Ets-1 activity is low in healthy cells, but elevated levels of expression have been found in cancerous cells, specifically related to tumor progression. Like the vast majority of the cellular effectors, Ets-1 does not act alone but in association with partners. Given the important role that is attributed to Ets-1 in major human diseases, it is crucial to identify its partners and characterize their interactions. In this context, two DNA-repair enzymes, PARP-1 and DNA-PK, have been identified recently as interaction partners of Ets-1. We here identify their binding mode by means of protein docking. The results identify the interacting surface between Ets-1 and the two DNA-repair enzymes centered on the α-helix H1 of the ETS domain, leaving α-helix H3 available to bind DNA. The models highlight a hydrophobic patch on Ets-1 at the center of the interaction interface that includes three tryptophans (Trp338, Trp356, and Trp361). We rationalize the binding mode using a series of computational analyses, including alanine scanning, molecular dynamics simulation, and residue centrality analysis. Our study constitutes a first but important step in the characterization, at the molecular level, of the interaction between an oncoprotein and DNA-repair enzymes.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Mapas de Interação de Proteínas , Proteína Proto-Oncogênica c-ets-1/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Enzimas Reparadoras do DNA/química , Proteína Quinase Ativada por DNA/química , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice , Proteína Proto-Oncogênica c-ets-1/química , Alinhamento de Sequência
9.
Biosci Biotechnol Biochem ; 82(10): 1753-1759, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29912634

RESUMO

The Ets-1 transcription factor plays an important role in various physiological and pathological processes. These diverse roles of Ets-1 are likely to depend on its interaction proteins. We have previously showed that Ets-1 interacted with DNA-dependent protein kinase (DNA-PK) complex including its regulatory subunits, Ku70 and Ku86 and with poly (ADP-ribose) polymerase-1 (PARP-1). In this study, the binding domains for the interaction between Ets-1 and these proteins were reported. We demonstrated that the interaction of Ets-1 with DNA-PK was mediated through the Ku70 subunit and was mapped to the C-terminal region of Ets-1 and the C-terminal part of Ku70 including SAP domain. The interactive domains between Ets-1 and PARP-1 have been mapped to the C-terminal region of Ets-1 and the BRCA1 carboxy-terminal (BRCT) domain of PARP-1. The results presented in this study may advance our understanding of the functional link between Ets-1 and its interaction partners, DNA-PK and PARP-1.


Assuntos
Autoantígeno Ku/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Sítios de Ligação , Humanos , Ligação Proteica , Proteína Proto-Oncogênica c-ets-1/química
10.
J Mol Biol ; 429(20): 3043-3055, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28893534

RESUMO

MED26 is a subunit of Mediator, a large complex central to the regulation of gene transcription by RNA Polymerase II. MED26 plays a role in the switch between the initiation and elongation phases of RNA Polymerase II-mediated transcription process. Regulation of these steps requires successive binding of MED26 N-terminal domain (NTD) to TATA-binding protein-associated factor 7 (TAF7) and Eleven-nineteen lysine-rich in leukemia-Associated Factor 1 (EAF1). In order to investigate the mechanism of regulation by MED26, MED26-NTD structure was solved by NMR, revealing a 4-helix bundle. EAF1 (239-268) and TAF7 (205-235) peptide interactions were both mapped to the same groove formed by H3 and H4 helices of MED26-NTD. Both interactions are characterized by dissociation constants in the 10-µM range. Further experiments revealed a folding-upon-binding mechanism that leads to the formation of EAF1 (N247-S260) and TAF7 (L214-S227) helices. Chemical shift perturbations and nuclear Overhauser enhancement contacts support the involvement of residues I222/F223 in anchoring TAF7 helix to a hydrophobic pocket of MED26-NTD, including residues L48, W80 and I84. In addition, Ala mutations of charged residues located in the C-terminal disordered part of TAF7 and EAF1 peptides affected the binding, with a loss of affinity characterized by a 10-time increase of dissociation constants. A structural model of MED26-NTD/TAF7 complex shows bi-partite components, combining ordered and disordered segments, as well as hydrophobic and electrostatic contributions to the binding. This study provides molecular detail that will help to decipher the mechanistic basis for the initiation to elongation switch-function mediated by MED26-NTD.


Assuntos
Complexo Mediador/química , Complexo Mediador/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas
11.
Nat Commun ; 7: 11590, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27188378

RESUMO

Haemophilus influenzae is an obligate human commensal/pathogen that requires haem for survival and can acquire it from several host haemoproteins, including haemopexin. The haem transport system from haem-haemopexin consists of HxuC, a haem receptor, and the two-partner-secretion system HxuB/HxuA. HxuA, which is exposed at the cell surface, is strictly required for haem acquisition from haemopexin. HxuA forms complexes with haem-haemopexin, leading to haem release and its capture by HxuC. The key question is how HxuA liberates haem from haemopexin. Here, we solve crystal structures of HxuA alone, and HxuA in complex with the N-terminal domain of haemopexin. A rational basis for the release of haem from haem-haemopexin is derived from both in vivo and in vitro studies. HxuA acts as a wedge that destabilizes the two-domains structure of haemopexin with a mobile loop on HxuA that favours haem ejection by redirecting key residues in the haem-binding pocket of haemopexin.


Assuntos
Proteínas de Bactérias/metabolismo , Haemophilus influenzae/metabolismo , Heme/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Proteínas de Bactérias/química , Escherichia coli , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Coelhos , Difração de Raios X
12.
Biomol NMR Assign ; 10(1): 233-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26861138

RESUMO

MED26 is a subunit of the Mediator, a very large complex involved in regulation of gene transcription by RNA Polymerase II. MED26 regulates the switch between initiation and elongation phases of the transcription. This function requires interaction of its N-terminal domain (NTD) with several protein partners implicated in transcriptional regulation. Molecular details of the structure and interaction mode of MED26 NTD would improve understanding of this complex regulation. As a first step towards structural characterization, sequence specific (1)H, (13)C and (15)N assignments for MED26 NTD was performed based on Nuclear Magnetic Resonance spectroscopy. TALOS+ analysis of the chemical shifts data revealed a domain solely composed of helices. Assignments will be further used to solve NMR structure and dynamics of MED26 NTD and investigate the molecular details of its interaction with protein partners.


Assuntos
Complexo Mediador/química , Ressonância Magnética Nuclear Biomolecular , Subunidades Proteicas/química , Sequência de Aminoácidos , Complexo Mediador/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Subunidades Proteicas/metabolismo
13.
Nucleic Acids Res ; 43(14): 7110-21, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26130716

RESUMO

The N-terminal acidic transactivation domain (TAD) of ERM/ETV5 (ERM38-68), a PEA3 group member of Ets-related transcription factors, directly interacts with the ACID/PTOV domain of the Mediator complex subunit MED25. Molecular details of this interaction were investigated using nuclear magnetic resonance (NMR) spectroscopy. The TAD is disordered in solution but has a propensity to adopt local transient secondary structure. We show that it folds upon binding to MED25 and that the resulting ERM-MED25 complex displays characteristics of a fuzzy complex. Mutational analysis further reveals that two aromatic residues in the ERM TAD (F47 and W57) are involved in the binding to MED25 and participate in the ability of ERM TAD to activate transcription. Mutation of a key residue Q451 in the VP16 H1 binding pocket of MED25 affects the binding of ERM. Furthermore, competition experiments show that ERM and VP16 H1 share a common binding interface on MED25. NMR data confirms the occupancy of this binding pocket by ERM TAD. Based on these experimental data, a structural model of a functional interaction is proposed. This study provides mechanistic insights into the Mediator-transactivator interactions.


Assuntos
Proteínas de Ligação a DNA/química , Complexo Mediador/química , Transativadores/química , Fatores de Transcrição/química , Proteínas de Ligação a DNA/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
14.
Nat Commun ; 6: 7452, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26058369

RESUMO

Omp85 proteins mediate translocation of polypeptide substrates across and into cellular membranes. They share a common architecture comprising substrate-interacting POTRA domains, a C-terminal 16-stranded ß-barrel pore and two signature motifs located on the inner barrel wall and at the tip of the extended L6 loop. The observation of two distinct conformations of the L6 loop in the available Omp85 structures previously suggested a functional role of conformational changes in L6 in the Omp85 mechanism. Here we present a 2.5 Å resolution structure of a variant of the Omp85 secretion protein FhaC, in which the two signature motifs interact tightly and form the conserved 'lid lock'. Reanalysis of previous structural data shows that L6 adopts the same, conserved resting state position in all available Omp85 structures. The FhaC variant structure further reveals a competitive mechanism for the regulation of substrate binding mediated by the linker to the N-terminal plug helix H1.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Difração de Raios X
15.
PLoS Pathog ; 11(3): e1004700, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25738876

RESUMO

Two-component systems (TCS) represent major signal-transduction pathways for adaptation to environmental conditions, and regulate many aspects of bacterial physiology. In the whooping cough agent Bordetella pertussis, the TCS BvgAS controls the virulence regulon, and is therefore critical for pathogenicity. BvgS is a prototypical TCS sensor-kinase with tandem periplasmic Venus flytrap (VFT) domains. VFT are bi-lobed domains that typically close around specific ligands using clamshell motions. We report the X-ray structure of the periplasmic moiety of BvgS, an intricate homodimer with a novel architecture. By combining site-directed mutagenesis, functional analyses and molecular modeling, we show that the conformation of the periplasmic moiety determines the state of BvgS activity. The intertwined structure of the periplasmic portion and the different conformation and dynamics of its mobile, membrane-distal VFT1 domains, and closed, membrane-proximal VFT2 domains, exert a conformational strain onto the transmembrane helices, which sets the cytoplasmic moiety in a kinase-on state by default corresponding to the virulent phase of the bacterium. Signaling the presence of negative signals perceived by the periplasmic domains implies a shift of BvgS to a distinct state of conformation and activity, corresponding to the avirulent phase. The response to negative modulation depends on the integrity of the periplasmic dimer, indicating that the shift to the kinase-off state implies a concerted conformational transition. This work lays the bases to understand virulence regulation in Bordetella. As homologous sensor-kinases control virulence features of diverse bacterial pathogens, the BvgS structure and mechanism may pave the way for new modes of targeted therapeutic interventions.


Assuntos
Proteínas de Bactérias/metabolismo , Droseraceae/metabolismo , Periplasma/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/química , Bordetella pertussis/metabolismo , Cristalografia por Raios X , Droseraceae/química , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Transdução de Sinais/fisiologia , Fatores de Transcrição/química , Virulência
16.
J Bacteriol ; 197(4): 688-98, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25404693

RESUMO

Many bacterial pathogens use type three secretion systems (T3SS) to inject virulence factors, named effectors, directly into the cytoplasm of target eukaryotic cells. Most of the T3SS components are conserved among plant and animal pathogens, suggesting a common mechanism of recognition and secretion of effectors. However, no common motif has yet been identified for effectors allowing T3SS recognition. In this work, we performed a biochemical and structural characterization of the Salmonella SopB/SigE chaperone/effector complex by small-angle X-ray scattering (SAXS). Our results showed that the SopB/SigE complex is assembled in dynamic homohexameric-ring-shaped structures with an internal tunnel. In this ring, the chaperone maintains a disordered N-terminal end of SopB molecules, in a good position to be reached and processed by the T3SS. This ring dimensionally fits the ring-organized molecules of the injectisome, including ATPase hexameric rings; this organization suggests that this structural feature is important for ATPase recognition by T3SS. Our work constitutes the first evidence of the oligomerization of an effector, analogous to the organization of the secretion machinery, obtained in solution. As effectors share neither sequence nor structural identity, the quaternary oligomeric structure could constitute a strategy evolved to promote the specificity and efficiency of T3SS recognition.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Salmonella typhimurium/metabolismo , Fator sigma/química , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos , Modelos Moleculares , Chaperonas Moleculares/genética , Estrutura Terciária de Proteína , Salmonella typhimurium/química , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Espalhamento a Baixo Ângulo , Fator sigma/genética
17.
Biophys J ; 107(1): 185-96, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24988353

RESUMO

Probing the solution structure of membrane proteins represents a formidable challenge, particularly when using small-angle scattering. Detergent molecules often present residual scattering contributions even at their match point in small-angle neutron scattering (SANS) measurements. Here, we studied the conformation of FhaC, the outer-membrane, ß-barrel transporter of the Bordetella pertussis filamentous hemagglutinin adhesin. SANS measurements were performed on homogeneous solutions of FhaC solubilized in n-octyl-d17-ßD-glucoside and on a variant devoid of the α helix H1, which critically obstructs the FhaC pore, in two solvent conditions corresponding to the match points of the protein and the detergent, respectively. Protein-bound detergent amounted to 142 ± 10 mol/mol as determined by analytical ultracentrifugation. By using molecular modeling and starting from three distinct conformations of FhaC and its variant embedded in lipid bilayers, we generated ensembles of protein-detergent arrangement models with 120-160 detergent molecules. The scattered curves were back-calculated for each model and compared with experimental data. Good fits were obtained for relatively compact, connected detergent belts, which occasionally displayed small detergent-free patches on the outer surface of the ß barrel. The combination of SANS and modeling clearly enabled us to infer the solution structure of FhaC, with H1 inside the pore as in the crystal structure. We believe that our strategy of combining explicit atomic detergent modeling with SANS measurements has significant potential for structural studies of other detergent-solubilized membrane proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo
18.
J Med Chem ; 57(11): 4876-88, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24818704

RESUMO

Tuberculosis remains a major cause of mortality and morbidity, killing each year more than one million people. Although the combined use of first line antibiotics (isoniazid, rifampicin, pyrazinamide, and ethambutol) is efficient to treat most patients, the rapid emergence of multidrug resistant strains of Mycobacterium tuberculosis stresses the need for alternative therapies. Mycobacterial transcriptional repressor EthR is a key player in the control of second-line drugs bioactivation such as ethionamide and has been shown to impair the sensitivity of the human pathogen Mycobacterium tuberculosis to this antibiotic. As a way to identify new potent ligands of this protein, we have developed fragment-based approaches. In the current study, we combined surface plasmon resonance assay, X-ray crystallography, and ligand efficiency driven design for the rapid discovery and optimization of new chemotypes of EthR ligands starting from a fragment. The design, synthesis, and in vitro and ex vivo activities of these compounds will be discussed.


Assuntos
Antituberculosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Benzamidas/síntese química , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Repressoras/antagonistas & inibidores , Tiazóis/síntese química , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Benzamidas/química , Benzamidas/farmacologia , Linhagem Celular , Cristalografia por Raios X , Camundongos , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Tiazóis/química , Tiazóis/farmacologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-24316822

RESUMO

Haemophilus influenzae HxuA is a cell-surface protein with haem-haemopexin binding activity which is key to haem acquisition from haemopexin and thus is one of the potential sources of haem for this microorganism. HxuA is secreted by its specific transporter HxuB. HxuA/HxuB belongs to the so-called two-partner secretion systems (TPSs) that are characterized by a conserved N-terminal domain in the secreted protein which is essential for secretion. Here, the 1.5 Šresolution structure of the secretion domain of HxuA, HxuA301, is reported. The structure reveals that HxuA301 folds into a ß-helix domain with two extra-helical motifs, a four-stranded ß-sheet and an N-terminal cap. Comparisons with other structures of TpsA secretion domains are reported. They reveal that despite limited sequence identity, strong structural similarities are found between the ß-helix motifs, consistent with the idea that the TPS domain plays a role not only in the interaction with the specific TpsB partners but also as the scaffold initiating progressive folding of the TpsA proteins at the bacterial surface.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Transporte/química , Haemophilus influenzae/química , Heme/química , Hemopexina/química , Modelos Moleculares , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Haemophilus influenzae/metabolismo , Heme/metabolismo , Hemopexina/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína
20.
Biochim Biophys Acta ; 1834(12): 2564-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075929

RESUMO

The TTSS is used by Salmonella and many bacterial pathogens to inject virulence factors directly into the cytoplasm of target eukaryotic cells. Once translocated these so-called effector proteins hijack a vast array of crucial cellular functions to the benefit of the bacteria. In the bacterial cytoplasm, some effectors are stabilized and maintained in a secretion competent state by interaction with specific type III chaperones. In this work we studied the conformation of the Chaperone Binding Domain of the effector named Salmonella Outer protein B (SopB) alone and in complex with its cognate chaperone SigE by a combination of biochemical, biophysical and structural approaches. Our results show that the N-terminus part of SopB is mainly composed by α-helices and unfolded regions whose organization/stabilization depends on their interaction with the different partners. This suggests that the partially unfolded state of this N-terminal region, which confers the adaptability of the effector to bind very different partners during the infection cycle, allows the bacteria to modulate numerous host cells functions limiting the number of translocated effectors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Salmonella typhimurium/química , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...