Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
An Pediatr (Engl Ed) ; 100(6): 404-411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806303

RESUMO

INTRODUCTION: Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) have modulatory effects on bowel function and its microbiota. Our aim was to investigate whether low levels of GH and IGF-1 in patients with GH deficiency are associated with changes in gut physiology/integrity as well as in the composition of the gut microbiota. MATERIALS AND METHODS: We conducted a case-control study in 21 patients with GH deficiency, at baseline and after 6 months of GH treatment, and in 20 healthy controls. We analysed changes in anthropometric and laboratory characteristics and bacterial translocation and studied the composition of the microbiome by means of massive 16S rRNA gene sequencing. RESULTS: Growth hormone deficiency was accompanied by a significant increase in serum levels of sCD14, a marker of bacterial translocation (P < .01). This increase was reversed by GH treatment. We did not find any differences in the composition or α- or ß-diversity of the gut microbiota after treatment or between cases and controls. CONCLUSIONS: Our work is the first to demonstrate that the presence of GH deficiency is not associated with differences in gut microbiota composition in comparison with healthy controls, and changes in microbiota composition are also not found after 6 months of treatment. However, GH deficiency and low IGF-1 levels were associated with an increase in bacterial translocation, which had reversed after treatment.


Assuntos
Microbioma Gastrointestinal , Hormônio do Crescimento Humano , Fator de Crescimento Insulin-Like I , Humanos , Masculino , Estudos de Casos e Controles , Feminino , Hormônio do Crescimento Humano/deficiência , Microbioma Gastrointestinal/efeitos dos fármacos , Criança , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/análise , Adolescente
2.
Sci Rep ; 13(1): 14327, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653055

RESUMO

Oral microbiome is the second largest microbial community in humans after gut. Human immunodeficiency virus (HIV) infection triggers an impairment of the immune system which could favour the growth and the colonization of pathogens in the oral cavity, and this dysbiosis has been associated with oral manifestations that worsen the quality of life of these patients. Antiretroviral therapy (ART) could also drive changes in specific oral bacterial taxa associated with such periodontal diseases. Integrase strand transfer inhibitors (INSTIs), therapy of choice in the treatment of naive HIV-patients, are able to reverse the impact of HIV infection on systemic inflammation, gut permeability, and gut bacterial diversity/richness. The objective of this study was to analyse the effects of HIV infection per se and INSTIs on salivary bacteriome composition, taking into consideration other factors such as smoking, that could also have a significant impact on oral microbiome. To accomplish this objective, 26 non-HIV-infected volunteers and 30 HIV-infected patients (15 naive and 15 under INSTIs-regimen) were recruited. Salivary samples were collected to measure lysozyme levels. Oral bacteriome composition was analysed using 16S rRNA gene sequencing. Naive HIV-infected patients showed statistically higher levels of lysozyme compared to controls (p < 0.001) and INSTIs-treated patients (p < 0.05). Our study was unable to detect differences in α nor ß-diversity among the three groups analysed, although significant differences in the abundance of some bacterial taxonomical orders were detected (higher abundance in the phylum Pseudomonadota, in the order Acholeplasmatales, and in the genera Ezakiella and Acholeplasma in the naive group compared to controls; and higher abundance in the phylum Mycoplasmatota, in the order Acholeplasmatales, and in the genera Acholeplasma and uncultured Eubacteriaceae bacterium in the INTIs-treated HIV-infected patients compared to controls). These differences seem to be partially independent of smoking habit. HIV infection and INSTIs effects on oral microbiota seem not to be very potent, probably due to the modulation of other factors such as smoking and the greatest outward exposure of the oral cavity.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Inibidores de Integrase , Infecções por HIV/tratamento farmacológico , Muramidase , Qualidade de Vida , RNA Ribossômico 16S/genética
3.
Sci Rep ; 12(1): 21658, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522388

RESUMO

Viruses are the most abundant components of the human gut microbiome with a significant impact on health and disease. The effects of human immunodeficiency virus (HIV) infection on gut virome has been scarcely analysed. Several studies suggested that integrase strand transfers inhibitors (INSTIs) are associated with a healthier gut. Thus, the objective of this work was to evaluate the effects of HIV infection and INSTIs on gut virome composition. 26 non-HIV-infected volunteers, 15 naive HIV-infected patients and 15 INSTIs-treated HIV-infected patients were recruited and their gut virome composition was analysed using shotgun sequencing. Bacteriophages were the most abundant and diverse viruses present in gut. HIV infection was accompanied by a decrease in phage richness which was reverted after INSTIs-based treatment. ß-diversity of phages revealed that samples from HIV-infected patients clustered separately from those belonging to the control group. Differential abundant analysis showed an increase in phages belonging to Caudoviricetes class in the naive group and a decrease of Malgrandaviricetes class phages in the INSTIs-treated group compared to the control group. Besides, it was observed that INSTIs-based treatment was not able to reverse the increase of lysogenic phages associated with HIV infection or to modify the decrease observed on the relative abundance of Proteobacteria-infecting phages. Our study describes for the first time the impact of HIV and INSTIs on gut virome and demonstrates that INSTIs-based treatments are able to partially restore gut dysbiosis at the viral level, which opens several opportunities for new studies focused on microbiota-based therapies.


Assuntos
Bacteriófagos , Infecções por HIV , Inibidores de Integrase de HIV , Integrase de HIV , Vírus , Humanos , Infecções por HIV/tratamento farmacológico , Viroma , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , Disbiose/tratamento farmacológico , Integrases
4.
Infect Dis Ther ; 11(4): 1541-1557, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35618952

RESUMO

INTRODUCTION: Human immunodeficiency virus (HIV) infection can be considered a chronic disease thanks to the extended use of antiretroviral treatment (ART). In this context, low-grade chronic inflammation related to gut microbiota (GM) dysbiosis and bacterial translocation (BT) among other factors has been observed despite the use of ART. In addition, different ART regimens have demonstrated differential impacts on GM. However, the role of novel integrase strand transfer inhibitors (INSTIs) has not been investigated yet. The aim of this study was to analyse the effects of INSTIs in first-line of treatment on markers of BT, inflammation, cardiovascular risk, gut permeability and GM composition and derived short-chain fatty acids. METHODS: Twenty-six non-HIV-infected volunteers and 30 HIV-infected patients (15 naïve and 15 under INSTIs regimen) were recruited. Blood samples were extracted to analyse biochemical parameters and markers of BT, inflammation, cardiovascular risk, gut permeability and bacterial metabolism. GM composition was analysed using 16S rRNA gene sequencing. RESULTS: Our results showed that HIV infection increased BT, inflammation, cardiovascular risk and gut permeability, whereas INSTIs counteracted these effects. Regarding GM, the reduction in bacterial richness induced by HIV infection was restored by INSTIs. Beta diversity revealed that HIV-infected people were separated from the control group independently of treatment. CONCLUSIONS: Current antiretroviral regimens based on INSTIs are able to reverse the impact of HIV infection on BT, systemic inflammation, gut permeability and bacterial diversity/richness, reaching similar levels to those observed in an uninfected/control population. These results suggest a protective role of INSTIs in disease progression, subsequent immune activation and in the development of future age-related complications such as cardiovascular events.

6.
Front Endocrinol (Lausanne) ; 12: 688071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489863

RESUMO

Coronavirus disease 19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to scale and threaten human health and public safety. It is essential to identify those risk factors that lead to a poor prognosis of the disease. A predisposing host genetic background could be one of these factors that explain the interindividual variability to COVID-19 severity. Thus, we have studied whether the rs4341 and rs4343 polymorphisms of the angiotensin converting enzyme (ACE) gene, key regulator of the renin-aldosterone-angiotensin system (RAAS), could explain the different outcomes of 128 COVID-19 patients with diverse degree of severity (33 asymptomatic or mildly symptomatic, 66 hospitalized in the general ward, and 29 admitted to the ICU). We found that G allele of rs4341 and rs4343 was associated with severe COVID-19 in hypertensive patients, independently of gender (p<0.05). G-carrier genotypes of both polymorphisms were also associated with higher mortality (p< 0.05) and higher severity of COVID-19 in dyslipidemic (p<0.05) and type 2 diabetic patients (p< 0.01). The association of G alleles with disease severity was adjusted for age, sex, BMI and number of comorbidities, suggesting that both the metabolic comorbidities and the G allele act synergistically on COVID-19 outcome. Although we did not find a direct association between serum ACE levels and COVID-19 severity, we found higher levels of ACE in the serum of patients with the GG genotype of rs4341 and rs4343 (p<0.05), what could explain the higher susceptibility to develop severe forms of the disease in patients with the GG genotype, in addition to hypertension and dyslipidemia. In conclusion, our preliminary study suggests that the G-containing genotypes of rs4341 and rs4343 confer an additional risk of adverse COVID-19 prognosis. Thus, rs4341 and rs4343 polymorphisms of ACE could be predictive markers of severity of COVID-19 in those patients with hypertension, dyslipidemia or diabetes. The knowledge of these genetic data could contribute to precision management of SARS-CoV-2 infected patients when admitted to hospital.


Assuntos
COVID-19/genética , Diabetes Mellitus/genética , Dislipidemias/genética , Variação Genética/genética , Hipertensão/genética , Peptidil Dipeptidase A/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , COVID-19/epidemiologia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Dislipidemias/diagnóstico , Dislipidemias/epidemiologia , Feminino , Hospitalização/tendências , Humanos , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Fatores de Risco , Índice de Gravidade de Doença , Espanha/epidemiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-34202210

RESUMO

Human immunodeficiency virus (HIV) infection is associated with premature aging and the development of aging-related comorbidities, such as cardiovascular disease (CVD). Gut microbiota (GM) disturbance is involved in these comorbidities and there is currently interest in strategies focused on modulating GM composition and/or functionality. Scientific evidence based on well-designed clinical trials is needed to support the use of prebiotics, probiotics, symbiotics, and fecal transplantation (FT) to modify the GM and reduce the incidence of CVD in HIV-infected patients. We reviewed the data obtained from three clinical trials focused on prebiotics, 25 trials using probiotics, six using symbiotics, and four using FT. None of the trials investigated whether these compounds could reduce CVD in HIV patients. The huge variability observed in the type of compound as well as the dose and duration of administration makes it difficult to adopt general recommendations and raise serious questions about their application in clinical practice.


Assuntos
Doenças Cardiovasculares , Infecções por HIV , Microbiota , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco de Doenças Cardíacas , Humanos , Fatores de Risco
9.
J Endocr Soc ; 5(3): bvaa199, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33506161

RESUMO

BACKGROUND: To better understand the biology of COVID-19, we have explored the behavior of calcitonin gene-related peptide (CGRP), an angiogenic, vasodilating, and immune modulating peptide, in severe acute respiratory syndrome coronavirus 2 positive patients. METHODS: Levels of CGRP in the serum of 57 COVID-19 patients (24 asymptomatic, 23 hospitalized in the general ward, and 10 admitted to the intensive care unit) and healthy donors (n = 24) were measured by enzyme-linked immunosorbent assay (ELISA). In addition, to better understand the physiological consequences of the observed variations, we investigated by immunofluorescence the distribution of receptor activity modifying protein 1 (RAMP1), one of the components of the CGRP receptor, in autopsy lung specimens. RESULTS: CGRP levels were greatly decreased in COVID-19 patients (P < 0.001) when compared to controls, and there were no significant differences due to disease severity, sex, age, or comorbidities. We found that COVID-19 patients treated with proton pump inhibitors had lower levels of CGRP than other patients not taking this treatment (P = 0.001). RAMP1 immunoreactivity was found in smooth muscle cells of large blood vessels and the bronchial tree and in the airways´ epithelium. In COVID-19 samples, RAMP1 was also found in proliferating type II pneumocytes, a common finding in these patients. CONCLUSIONS: The lower levels of CGRP should negatively impact the respiratory physiology of COVID-19 patients due to vasoconstriction, improper angiogenesis, less epithelial repair, and faulty immune response. Therefore, restoring CGRP levels in these patients may represent a novel therapeutic approach for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...