Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307332

RESUMO

Benzopyrene (BaP) stands as a potent polycyclic aromatic hydrocarbon (PAH) molecule, boasting five fused aromatic rings, making its way into the human food chain through soil contamination. The persistent environmental presence of PAHs in soil, attributed to industrial exposure, is primarily due to their low molecular weight and hydrophobic nature. To preemptively address the entry of BaP into the food chain, the application of nanocomposites was identified as an effective remediation strategy. Post-synthesis, comprehensive characterization tests employing techniques such as UV-DRS, XRD, SEM-EDX, FTIR, and DLS unveiled the distinctive features of the g-C3N4-SnS nanocomposites. These nanocomposites exhibited spherical shapes embedded on layers of nanosheets, boasting particle diameters measuring 88.9 nm. Subsequent tests were conducted to assess the efficacy of eliminating benzopyrene from a combination of PAH molecules and g-C3N4-SnS nanocomposites. Varied parameters, including PAH concentration, adsorbent dosage, and suspension pH, were systematically explored. The optimized conditions for the efficient removal of BaP utilizing the g-C3N4-SnS nanocomposite involved 2 µg/mL of benzopyrene, 10 µg/mL of the nanocomposite, and a pH of 5, considering UV light as the irradiation source. The investigation into the mechanism governing BaP elimination closely aligned with batch adsorption results involved a thorough exploration of adsorption kinetics and isotherms. Photocatalytic degradation of benzopyrene was achieved, reaching a maximum of 86 % in 4 h and 36 % in 2 h, with g-C3N4-SnS nanocomposite acting as the catalyst. Further validation through HPLC data confirmed the successful removal of BaP from the soil matrix.


Assuntos
Grafite , Nanocompostos , Compostos de Nitrogênio , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Nanocompostos/química , Grafite/química , Benzo(a)pireno , Benzopirenos , Solo , Catálise
2.
Rev Med Virol ; 33(5): e2462, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37280764

RESUMO

Head and neck cancer, one of the most commonly prevalent malignancies globally is a complex category of tumours that comprises cancers of the oral cavity, pharynx, and larynx. A specific subgroup of such cancers has been found with some unique chromosomal, therapeutic, and epidemiologic traits with the possibility of affecting via co-infection. About 25% of all head and neck cancers in the population are human papillomavirus infection (HPV)-associated, typically developing in the oropharynx, which comprises the tonsils. In the period of efficient combined antiviral treatment, HPV-positive oral cancers are also becoming a significant contributor to illness and fatality for Human Immunodeficiency Virus (HIV)-infected persons. Although the prevalence and historical background of oral HPV transmission are not thoroughly understood, it seems likely that oral HPV transmission is relatively frequent in HIV-infected people when compared to the overall population. Therefore, there is a need to understand the mechanisms leading to this co-infection, as there is very little research related to that. Hence, this study mainly focus on the therapeutical and biomedical analysis of HPV and HIV co-infection in the above-mentioned cancer, including oral squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Coinfecção , Infecções por HIV , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/epidemiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/epidemiologia , Neoplasias Bucais/complicações , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia , Coinfecção/epidemiologia , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , HIV , Papillomaviridae/genética
3.
Bioengineering (Basel) ; 10(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36978692

RESUMO

The current research is concerned with the synthesis of magnesium oxide (MgO) nanoparticles (NPs) from Abrus precatorius L. bark extract via the green chemistry method. The synthesized MgO NPs was confirmed by using several characterization methods like XRD, FTIR, SEM, TEM, and UV-visible analysis. The synthesized MgO NPs displayed a small particle size along with a specific surface area. Abrus precatorius bark synthesized MgO NPs with a higher ratio of dye degradation, and antioxidant activity showed a higher percentage of free radical scavenging in synthesized MgO NPs. Zebrafish embryos were used as a model organism to assess the toxicity of the obtained MgO nanoparticles, and the results concluded that the MgO NPs were nontoxic. In addition, the anticancer properties of MgO nanoparticles were analyzed by using a human melanoma cancer cell line (A375) via MTT, XTT, NRU, and LDH assessment. MgO NPs treated a human melanoma cancer cell line and resulted in apoptosis and necrosis based on the concentration, which was confirmed through a genotoxicity assay. Moreover, the molecular mechanisms in necrosis and apoptosis were conferred to depict the association of magnesium oxide nanoparticles with the human melanoma cancer cell line. The current study on MgO NPs showed a broad-scope understanding of the use of these nanoparticles as a medicinal drug for melanoma cancer via its physiological mechanism and also a novel route to obtain MgO NPs by using the green chemistry method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA