Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35267841

RESUMO

To decrease the environmental impact of bitumen, more sustainable binders should be proposed. This study emphasizes how industrial humins co-produced during the biorefining of carbohydrates can be employed as a macromolecular binder for bitumen. Humins are heterogeneous polyfuranic compounds, and they were mixed at 50 wt% with bitumen. When the non-water-soluble fractions of humins were employed (Hns), no variation of the chemical structure was observed in FTIR spectra after the mixing. The DSC investigations showed that the crystallization of aromatic fractions in bitumen shifted to higher temperature for humins' modified bitumen. The thermogravimetric data highlighted that the presence of humins or Hns in bitumen can lead to mass loss below 200 °C. The rheological investigations highlighted some key advantages of using humins or Hns with bitumen. At high temperatures, the storage modulus of the modified bitumen is increased and shows lower susceptibility to variations in frequency. At low temperatures, the phase angle of Hns-modified bitumen is lower than that of bitumen, suggesting less temperature susceptibility as a consequence of a cross-linked network formation.

2.
Dalton Trans ; 47(33): 11605-11618, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30090882

RESUMO

Since the 1940s, great amounts of Plutonium (Pu) have been produced for both military and civil purposes. Until now, the standard therapy for decorporation following inhalation has been the intravenous injection of diethylenetriaminepentaacetic acid ligand (Ca-DTPA form). This method offers a strong complexing constant for Pu(iv) but has poor chemical specificity, therefore its efficacy is limited to actinides present in the blood. Consequently, there is no decorporation treatment currently available which efficiently removes the intracellular Pu(iv) trapped in the pulmonary macrophages. Our research shows that a nanoparticle approach could be of particular interest due to large contact area and ability to target the retention compartments of the lungs. In this study, we have focused on the inhalation process involving forms of Pu(iv) with poor solubility. We explored the design of biocompatible nanoparticles able to target the macrophages in the lung alveoli and to chelate the forms of Pu(iv) with poor solubility. Nanoparticle formation was achieved through an ionic cross-linking concept using a polycationic polymer and an anionic chelate linker. We chose N-trimethyl chitosan, for its biocompatibility, as the polycationic polymer base of the nanoparticle and the phosphonic analogue of DTPA, diethylenetriamine-pentamethylenephosphonic acid (DTPMP) as the anionic chelating linker in forming NPs TMC-DTPMP. The synthesis and physico-chemical characterization of these NPs are presented. Secondly, the complexation mechanisms of TMC-DTPMP NPs with Thorium (Th(iv)) are discussed in terms of efficiency and structure. The Extended X-Ray Absorption Fine Structure (EXAFS) of the TMC-DTPMP complex with Th(iv) as well as Pu(iv) are defined and completed with DFT calculations to further delineate the plutonium coordination sphere after complexation. Finally, preliminary cytotoxicity tests onto macrophages were assayed.

3.
ChemSusChem ; 11(16): 2797-2809, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29956889

RESUMO

A new macroporous foam-like material is presented based on autocross-linking humins, an industrial biorefinery byproduct. Humins foams are obtained by a simple heating process, without any pretreatment and with high control of morphology, porosity, and carbon content. Untreated humins have been characterized by GC, ultra-performance liquid chromatography (UPLC), elemental analysis, and FTIR, whereas the mechanism of foaming was elucidated by a combination of thermal and rheological analyses. A preliminary screening of conditions was conducted to identify the parameters controlling this foaming process. A foam was produced in a controlled way with open and/or closed cells with cell diameters between 0.2 and 3.5 mm. Humins foams were characterized by Raman spectroscopy, FTIR, SEM, nitrogen adsorption, pycnometry, and mechanical tests. The results show that, based on humins, it is possible to obtain porous materials with controlled architectures and a range of parameters that can be tailored, depending on the foreseen applications.

4.
ChemSusChem ; 11(11): 1805-1812, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29683549

RESUMO

This work shows how furan ring-opening reactions were controlled by polymerization conditions to tune the cross-link density in bio-based poly(furfuryl alcohol) (PFA). The influence of water and isopropyl alcohol (IPA) on the polymerization of furfuryl alcohol, and particularly on furan ring-opening, was investigated by means of 13 C NMR and FT-IR spectroscopy. Results indicated that formation of open structures were favored in the presence of solvents, thus leading to modification of the thermo-mechanical properties compared to PFA cross-linked without solvent. Dynamic mechanical analyses showed that when slightly more open structures were present in PFA it resulted in an important decrease of the cross-link density. Despite lower glass-transition temperature and lower elastic modulus for PFA polymerized with solvent, the thermal stability remains very high (>350 °C) even with more open structures in PFA.

5.
Polymers (Basel) ; 10(5)2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30966563

RESUMO

Furfuryl alcohol (FA) is a biobased monomer derived from lignocellulosic biomass. The present work describes its polymerization in the presence of protic polar solvents, i.e., water or isopropyl alcohol (IPA), using maleic anhydride (MA) as an acidic initiator. The polymerization was followed from the liquid to the rubbery state by combining DSC and DMA data. In the liquid state, IPA disrupts the expected reactions during the FA polymerization due to a stabilization of the furfuryl carbenium center. This causes the initiation of the polymerization at a higher temperature, which is also reflected by a higher activation energy. In the water system, the MA opening allows the reaction to start at a lower temperature. A higher pre-exponential factor value is obtained in that case. The DMA study of the final branching reaction occurring in the rubbery state has highlighted a continuous increase of elastic modulus until 290 °C. This increasing tendency of modulus was exploited to obtain activation energy dependences (Eα) of FA polymerization in the rubbery state.

6.
Carbohydr Polym ; 167: 12-19, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28433145

RESUMO

The hypothesis made is that thermal resistance of sorghum and miscanthus stem pieces taken at well-defined positions of the stem is simply related to their biochemical composition. For miscanthus, two different genotypes and two internode levels were selected. For each region, the stem was divided into three radial layers. For sorghum, two different genotypes were selected and the stem was divided into the same three radial layers. The results show that the thermal analysis is only sensitive to very large variations of compositions. But aside of such large composition differences, it is impossible to correlate thermal effects to biochemical composition even on very small size, well-identified pieces of plant materials. The interplay between sugar-based components, lignin and minerals is totally blurring the thermal response. Extreme care must be exercised when willing to explain why a given plant material has a thermal behaviour different of another plant material.


Assuntos
Lignina/química , Caules de Planta/química , Poaceae/química , Sorghum/química , Genótipo , Poaceae/genética , Sorghum/genética , Temperatura
7.
ChemSusChem ; 8(24): 4149-61, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26663869

RESUMO

Epoxidized linseed oil and furfuryl alcohol are bio-sourced monomers known for their high-potential applications in materials science. In this work, we propose the association of these monomers through copolymerization reactions with the target to design fully bio-based thermosets. Herein, investigations on cationic polymerization reactivity have been explored using differential scanning calorimetry. The obtained structures have been confirmed by IR spectroscopy and 2 D NMR spectroscopy, which revealed the principal chain connections. In spite of the multiple capabilities of chemical connections, which include copolymerization and cross-linking, the obtained networks are homogeneous as confirmed by dynamic mechanical analysis and SEM. Furthermore, the copolymer demonstrates a semiductile behavior if subjected to tensile measurements (tensile strain at break ≈40 %), which is a significant advance in terms of its applications as a furanic bio-based thermoset material.


Assuntos
Biomassa , Compostos de Epóxi/química , Furanos/química , Óleo de Semente do Linho/química , Polimerização , Temperatura , Resistência à Tração
8.
J Phys Chem B ; 116(28): 8259-68, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22702448

RESUMO

Furfuryl alcohol (FA) which is derived from lignocellulosic biomass polymerizes into poly(furfuryl alcohol) (PFA) under acidic catalysis. A greener and more sustainable catalytic route was proposed in order to replace hazardous acidic catalysts. Organically modified montmorillonite (Org-MMT) and, in comparison, sodium MMT (Na-MMT) are used to evaluate the catalytic effect on the FA polymerization. X-ray diffraction (XRD) and transmission electronic microscopy (TEM) show that clay layers have been exfoliated during polymerization. Additional FTIR spectroscopy measurements confirm that furanic oligomers have intercalated between clay layers by cation exchange. An original combination between chemorheological and model-free kinetic analysis allows highlighting the influence of MMT on the overall polymerization pathway. The octadecyl ammonium cation (ODA) was also used as homogeneous acidic catalyst to highlight the specific role of this interlayer cation present in Org-MMT. Interestingly, FA/Org-MMT polymerizes more rapidly than FA/ODA but initiation of polymerization is slightly shifted to higher temperature due to initial intercalation between MMT layers. Then, the dual acidic character (Lewis + Brönsted) of Org-MMT leads to gelation at early stage of polymerization. The results clearly show that exfoliation of MMT layers increases the efficiency of collisions.

9.
J Phys Chem B ; 116(19): 5786-94, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22540520

RESUMO

The aim of this study is to understand the effect of nonmodified or different organically modified montmorillonites on the reaction mechanism of epoxy/amine cure. The reference material consists of diglycidyl ether of bisphenol A (DGEBA) and 1,3-phenylene diamine (mPDA) in stoichiometric proportions. The reaction with various organically modified montmorillonites (I28E, I34TCN, and MMTm) is compared to highlight the catalytic effect of MMT water content and of the alkylammonium cations on the epoxy/amine reaction mechanism. In the absence of mPDA curing agent, DGEBA develops homopolymerization reactions with I28E, I34TCN, and MMTm. Chemorheological kinetics and advanced isoconversional analysis of epoxy cure are studied by rheometrical measurements and differential scanning calorimetry (DSC). Molecular mobility of the system under curing is modified in the presence of montmorillonites. Finally, the study underlines the role of montmorillonites and the influence of the change in reaction mechanisms on glass transition of the nanocomposites.

10.
Phys Chem Chem Phys ; 11(8): 1227-36, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19209367

RESUMO

The glass transition of lignin has been studied by multifrequency calorimetric measurements in order to highlight the morphological changes and the dynamic aspects associated to this relaxation process. Influences of water sorption and thermal annealing on molecular mobility have been considered. Additional investigations by thermogravimetry, infra-red spectroscopy and rheometry have been performed to corroborate the claims. The relaxation process of annealed lignin shows a different behaviour as the consequence of micro-structural modifications of lignin. These are explained by redistribution of secondary bonds as well as formation of new interunit linkages. Concerning the dynamic aspects, apparent activation energy, E, and sizes of cooperatively rearranging region, V(crr), have been evaluated respectively from the frequency dependence and heat capacity measurements of the glass transition. Compared to dried lignin, both E and V(crr) significantly decrease in a water-sorbed matrix indicating that the three-dimensional structure presents a higher mobility and is less confined.


Assuntos
Varredura Diferencial de Calorimetria/métodos , Lignina/química , Desidratação , Cinética , Lignina/isolamento & purificação , Estrutura Molecular , Termodinâmica , Termogravimetria , Temperatura de Transição , Água/química
11.
Phys Chem Chem Phys ; 9(39): 5359-66, 2007 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17914473

RESUMO

The complete curing of furfuryl alcohol (FA), was studied by chemorheological analysis and model-free kinetics under isothermal and non-isothermal modes. Polymerization of FA under acidic catalysis involves complex reactions, with several steps (such as condensations and Diels-Alder cycloadditions). To account for the polymerization complexity, kinetic analysis of DSC data was performed with a model-free isoconversional method. The obtained E(alpha)-dependencies were closely-correlated with the variation of complex viscosity during curing. Linear condensations are predominant during the early curing stage and are followed by two distinct stages of branching cycloadditions. Gelation and vitrification, identified by rheometric measurements, were associated with a decrease of the overall reaction rate that becomes controlled by diffusion of small oligomers. Before vitrification, the rate of crosslinking is limited by the mobility of longer polymer chains and diffusion encounters a large energy barrier due to the cooperative nature of the motions, leading to higher E(alpha) values.

12.
Macromol Biosci ; 7(11): 1181-6, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-17876859

RESUMO

An isoconversional method is proposed to be used for evaluating activation energy of protein denaturation. Applied to DSC data on collagen denaturation, the method yields an activation energy that decreases throughout the process. The Lumry-Eyring model gives an explanation for this decrease and affords estimates for the enthalpy of the reversible step and the activation energy of the irreversible step of denaturation. The reversible unfolding is detectable by multi-frequency temperature-modulated DSC.


Assuntos
Colágeno/química , Desnaturação Proteica , Temperatura , Animais , Varredura Diferencial de Calorimetria , Bovinos , Cinética , Tendões/química , Termodinâmica
13.
Analyst ; 130(10): 1369-74, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16172661

RESUMO

Sources of VOC (Volatile Organic Compounds) reference-materials at ppm and ppb levels are needed for calibration of air monitoring instruments. The permeation-tube technique is considered effective for the preparation of low concentration standards of high accuracy and stability. In this work, purpose-built PTFE permeation tubes, containing benzene, toluene, ethylbenzene, o-xylene or m-xylene (BTEX) were accurately and rapidly calibrated. Using the sensitive thermo-balance of a thermogravimetric apparatus, very low permeation rates were determined by the continuous monitoring of the tube weight loss as a function of time. Permeation rates in the range from 25 to 350 ng min(-1) were determined with precision. Thermogravimetry appears to be a rapid method for the measurement of weight loss at constant temperature, allowing rapid characterization and recalibration of permeation tubes. A detailed study on toluene, chosen as a typical case, showed that there are variations of the permeation rate in the long term. The temperature dependence of the permeation coefficient was also explored and permeation rates were shown to display an Arrhenius behavior in the temperature range 304-324 K. Thermodynamic parameters influencing the permeation were discussed.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Calibragem , Monitoramento Ambiental/métodos , Gravitação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...