Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 9(1): 50, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355663

RESUMO

The Moon is a geological history book, preserving information about the history of the Solar System, including the formation and early evolution of the terrestrial planets and their bombardment histories, as well as providing insight into other fundamental Solar System processes. These topics form the basis for science "of the Moon", but the lunar surface is also a platform for science "on the Moon" and "from the Moon"-including astronomical observations, fundamental physics, and life science investigations. Recently, the Moon has become a destination for technology research and development-in particular for developing in situ resources, human exploration, and habitation, and for its potential use as a waypoint for the human exploration of Mars. This paper, based on recommendations originally proposed in a White Paper for ESA's SciSpacE strategy, outlines key lunar science questions that may be addressed by future space exploration missions and makes recommendations for the next decades.

2.
J Colloid Interface Sci ; 638: 552-560, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773517

RESUMO

HYPOTHESIS: Many applications of liquid foams use them to fill the porosity of various granular media. How is the liquid distributed in such foam-filled systems, in which the geometry of the bubble assembly can be strongly constrained by pore confinement? EXPERIMENTS: We study how the liquid is distributed in a grain packing filled with liquid foam, as a function of both liquid content and bubble-to-grain size ratio. Moreover, Surface Evolver simulations are carried out at the scale of a single bubble confined into a tetrahedral pore. FINDINGS: We reveal that foam-filled granular assemblies exhibit a robust pendular-like regime, which is reminiscent of the pendular regime in unsaturated media. The main difference is that here the liquid bridges are daisy-shaped, i.e. with a liquid core bounded by bubbly petals. A simple theoretical model is proposed to describe the foam liquid bridges between contacting grains. In the case of large bubbles, the model is compared with the Surface Evolver simulation. The model is also applied to the case of wall liquid bridge, which is compared with the experimental observation. Beyond their geometrical characteristics, the presence of these liquid bridges, which can represent almost 25% of the liquid contained in the porosity, makes it possible to imagine a new approach (binder foam-based) to bind granular assemblies and turn them to solid materials.

3.
NPJ Microgravity ; 8(1): 51, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36404345

RESUMO

The tropics is the nexus for many of the remaining gaps in our knowledge of environmental science, including the carbon cycle and atmospheric chemistry, with dire consequences for our ability to describe the Earth system response to a warming world. Difficulties associated with accessibility, coordinated funding models and economic instabilities preclude the establishment of a dense pan-tropical ground-based atmospheric measurement network that would otherwise help to describe the evolving state of tropical ecosystems and the associated biosphere-atmosphere fluxes on decadal timescales. The growing number of relevant sensors aboard sun-synchronous polar orbiters provide invaluable information over the remote tropics, but a large fraction of the data collected along their orbits is from higher latitudes. The International Space Station (ISS), which is in a low-inclination, precessing orbit, has already demonstrated value as a proving ground for Earth observing atmospheric sensors and as a testbed for new technology. Because low-inclination orbits spend more time collecting data over the tropics, we argue that the ISS and its successors, offer key opportunities to host new Earth-observing atmospheric sensors that can lead to a step change in our understanding of tropical carbon fluxes.

4.
Langmuir ; 32(25): 6239-45, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27244300

RESUMO

We present the results of an experimental investigation of the effect of gas type and composition on foam transport in porous media. Steady-state foam strengths with respect to three cases of distinct gases and two cases containing binary mixtures of these gases were compared. The effects of gas solubility, the stability of lamellae, and the gas diffusion rate across the lamellae were examined. Our experimental results showed that the steady-state foam strength is inversely correlated with the gas permeability across a liquid lamella, a parameter that characterizes the rate of mass transport. The results are also in good agreement with existing observations that the foam strength for a mixture of gases is correlated with the less soluble component. Three hypotheses with different predictions of the underlying mechanism that explain the role of gas type and composition in foam strength are discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...