Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0271398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35901122

RESUMO

Central Asia is an important center of origin for many globally valued fruit and nut tree species. Forest degradation and deforestation are cause for concern for the conservation of these valuable species, now confined to small remnant populations. Home gardens have the important function of sustaining household food consumption and income generation, and can potentially play a critical role in conserving diversity of fruit and nut trees. These systems have been very poorly documented in the scientific literature. This study contributes to filling this gap by describing the diversity of fruit and nut trees in home gardens of Kyrgyzstan, Uzbekistan, and Tajikistan, examining their dynamic flow of planting material and its sources, understanding their future prospects, and looking at significant differences between the three countries. Home gardens show a similar portfolio of the most abundant tree species (apple, apricot, walnut, pear, and plum). Although the diversity of tree species and varieties recorded is significant, small population sizes can limit future possibilities for this diversity to thrive, given the pressure on natural stands and on habitats where the preferred species are found. Furthermore, the selection of species and varieties to be planted in home gardens is increasingly influenced by market opportunities and availability of exotic material. Some of the most abundant tree species recorded are represented largely by exotic varieties (apple, pear), while others (e.g., apricot, walnut, plum) are still mainly characterized by traditional local varieties that are not formally registered. Home gardens continue to play a critical role in rural livelihoods and in national economies, and many rural inhabitants still aspire to maintain them. Thus, home gardens should be integrated in national research and extension systems and closely linked to national conservation efforts. Changes and possible declines in the diversity they host, their health status, and resilience should be carefully monitored.


Assuntos
Jardins , Árvores , Ásia , Frutas , Nozes
2.
Ambio ; 51(10): 2137-2154, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35737271

RESUMO

Indigenous trees play key roles in West African landscapes, such as the néré tree (Parkia biglobosa (Jacq.) R.Br. ex G.Don). We applied social-ecological network analysis to understand the social-ecological interactions around néré. We documented the benefits néré provides and the multiple social interactions it creates amongst a large range of actors. The flows of rights over the trees and benefits from them formed two hierarchical networks, or cascades, with different actors at the top. The two forms of power revealed by the two cascades of rights and benefits suggest possible powers and counter-powers across gender, ethnicity, and age. We documented how the tree catalyses social interactions across diverse groups to sustain vital social connections, and co-constitute places, culture, and relationships. We argue that a paradigm shift is urgently needed to leverage the remarkable untapped potential of indigenous trees and Cultural Keystone Species in current global restoration and climate change agendas.


Assuntos
Mudança Climática , Árvores , Rede Social
3.
Crit Rev Food Sci Nutr ; 62(1): 119-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32914637

RESUMO

There is increasing evidence that nutrient differences observed among crop varieties or animal breeds belonging to the same species are sometimes greater than differences between species. Parkia biglobosa is an important tree species that provides edible products and income to rural households in West Africa. To better understand intra-species nutrient variability of P. biglobosa edible products, a review on the nutrient content of its pulp and seeds (raw and fermented) was conducted. Google scholar and the keywords "P. biglobosa" AND "nutrition" were used to screen the available literature from 1980 onwards, and the Zotero software was used to manage references. A step-wise assessment of titles, abstracts and full papers, led to a selection of 69 papers from which data were retrieved following FAO INFOODS guidelines. After data harmonization and quality checks, 42 papers were retained and used to extract data to populate a nutrient database. Despite an apparent abundance of nutrient analyses focused on P. biglobosa's edible products, the quality of data available was poor and very few authors presented additional information, such as soil characteristics, climate, maturity at harvest, etc. that could influence the nutritional content of the products. Many data gaps remain. The present study will stimulate further investigations into nutrient composition of P. biglobosa products and ultimately will contribute to selecting nutritionally "+" trees for multiplication and/or domestication of the species.


Assuntos
Fabaceae , África Ocidental , Animais , Nutrientes , Sementes , Árvores
4.
Conserv Biol ; 36(3): e13873, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34865262

RESUMO

Tree diversity in Asia's tropical and subtropical forests is central to nature-based solutions. Species vulnerability to multiple threats, which affect provision of ecosystem services, is poorly understood. We conducted a region-wide, spatially explicit assessment of the vulnerability of 63 socioeconomically important tree species to overexploitation, fire, overgrazing, habitat conversion, and climate change. Trees were selected for assessment from national priority lists, and selections were validated by an expert network representing 20 countries. We used Maxent suitability modeling to predict species distribution ranges, freely accessible spatial data sets to map threat exposures, and functional traits to estimate threat sensitivities. Species-specific vulnerability maps were created as the product of exposure maps and sensitivity estimates. Based on vulnerability to current threats and climate change, we identified priority areas for conservation and restoration. Overall, 74% of the most important areas for conservation of these trees fell outside protected areas, and all species were severely threatened across an average of 47% of their native ranges. The most imminent threats were overexploitation and habitat conversion; populations were severely threatened by these factors in an average of 24% and 16% of their ranges, respectively. Our model predicted limited overall climate change impacts, although some study species were likely to lose over 15% of their habitat by 2050 due to climate change. We pinpointed specific natural areas in Borneo rain forests as hotspots for in situ conservation of forest genetic resources, more than 82% of which fell outside designated protected areas. We also identified degraded areas in Western Ghats, Indochina dry forests, and Sumatran rain forests as hotspots for restoration, where planting or assisted natural regeneration will help conserve these species, and croplands in southern India and Thailand as potentially important agroforestry options. Our results highlight the need for regionally coordinated action for effective conservation and restoration.


Especies de Árboles Valoradas y Amenazadas de Asia Tropical y Subtropical Resumen La diversidad de árboles en los bosques tropicales y subtropicales de Asia es un eje central para las soluciones basadas en la naturaleza. La vulnerabilidad de las especies ante las múltiples amenazas, las cuales afectan el suministro de servicios ambientales, es un tema poco comprendido. Realizamos una evaluación regional espacialmente explícita de la vulnerabilidad de 63 especies de árboles de importancia socioeconómica ante la sobreexplotación, incendios, sobrepastoreo, conversión del hábitat y cambio climático. Los árboles se seleccionaron para su evaluación a partir de listas nacionales de prioridades, y las selecciones fueron validadas por una red de expertos de 20 países. Usamos el modelado de idoneidad Maxent para predecir el rango de distribución de las especies, conjuntos de datos espaciales de libre acceso para mapear la exposición a las amenazas y rasgos funcionales para estimar la susceptibilidad a las amenazas. Con base en la vulnerabilidad a las amenazas actuales y al cambio climático, identificamos las áreas prioritarias para su conservación y restauración. En general, el 74% de las áreas más importantes para la conservación de estos árboles quedó fuera de las áreas protegidas y todas las especies estaban seriamente amenazadas en promedio en el 47% de su distribución nativa. Las amenazas más inminentes fueron la sobreexplotación y la conversión del hábitat; las poblaciones estuvieron seriamente amenazadas por estos factores en promedio en el 24% y 16% de su distribución, respectivamente. Nuestro modelo predijo un impacto general limitado del cambio climático, aunque algunas especies estudiadas tuvieron la probabilidad de perder más del 15% de su hábitat para el 2050 debido a este factor. Identificamos áreas naturales específicas en las selvas de Borneo como puntos calientes para la conservación in situ de los recursos genéticos forestales, más del 82% de los cuales estaban fuera de las áreas protegidas designadas. También identificamos áreas degradadas en los Ghats Occidentales, los bosques secos de Indochina y las selvas de Sumatra como puntos calientes para la restauración, en donde la siembra o la regeneración natural asistida ayudarán a conservar estas especies. Además, identificamos campos de cultivo al sur de India y Tailandia como potenciales opciones importantes de agrosilvicultura. Nuestros resultados resaltan la necesidad de acciones regionales coordinadas para la conservación y restauración efectivas.


Assuntos
Ecossistema , Árvores , Mudança Climática , Conservação dos Recursos Naturais , Florestas , Tailândia
5.
PLoS One ; 16(3): e0243017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33724989

RESUMO

Trees are a traditional component of urban spaces where they provide ecosystem services critical to urban wellbeing. In the Tropics, urban trees' seed origins have rarely been characterized. Yet, understanding the social dynamics linked to tree planting is critical given their influence on the distribution of associated genetic diversity. This study examines elements of these dynamics (seed exchange networks) in an emblematic indigenous fruit tree species from Central Africa, the African plum tree (Dacryodes edulis, Burseraceae), within the urban context of Yaoundé. We further evaluate the consequences of these social dynamics on the distribution of the genetic diversity of the species in the city. Urban trees were planted predominantly using seeds sourced from outside the city, resulting in a level of genetic diversity as high in Yaoundé as in a whole region of production of the species. Debating the different drivers that foster the genetic diversity in planted urban trees, the study argues that cities and urban dwellers can unconsciously act as effective guardians of indigenous tree genetic diversity.


Assuntos
Burseraceae/genética , Variação Genética , Teorema de Bayes , Burseraceae/crescimento & desenvolvimento , Camarões , Repetições de Microssatélites/genética , Análise de Componente Principal , Sementes/genética , Fatores Sociais
6.
Am J Bot ; 107(7): 1041-1053, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638366

RESUMO

PREMISE: A good understanding of genetic variation and gene dispersal in tree populations is crucial for their sustainable management, particularly in a context of rapid environmental changes. West African Sudanian savannahs are being fragmented and degraded, partly due to expansion of crop cultivation and monocultures that reduce tree density and may impact pollinators. The population dynamics of important indigenous trees could also be affected. We investigated the influence of habitat fragmentation on patterns of genetic diversity and gene dispersal of a key Sudanian agroforestry tree species, Parkia biglobosa. METHODS: Using 10 highly polymorphic nuclear microsatellites, we genotyped 2475 samples from reproductive trees, seedlings, and embryos in four tree populations presenting different levels of habitat fragmentation. RESULTS: Parkia biglobosa presented similar high genetic diversity across the four populations studied. Genetic diversity and inbreeding were similar between adults and embryo cohorts. In all four populations, the selfing rate was less than 1%. The effective number of pollen donors per tree was high (NEP ~ 18-22), as was the pollen immigration rate (from 34 to 74%). Pollen dispersal was characterized by a fat-tailed distribution with mean estimates exceeding 200 m. In three populations, stem diameter had a pronounced effect on male reproductive success. Here, the highest male reproductive success was observed in trees with a diameter at breast height between 60 and 75 cm. CONCLUSIONS: At the scale analyzed, fragmentation does not seem to pose limitations to gene flow in any of the sites investigated, regardless of the landscape configuration associated with the different tree stands. The study provides useful insights on the reproductive biology of an important tree species in the West African savannahs.


Assuntos
Ecossistema , Fluxo Gênico , Variação Genética , Genética Populacional , Endogamia , Repetições de Microssatélites/genética , Árvores/genética
7.
J Hered ; 109(7): 811-824, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30247720

RESUMO

The evolutionary history of African savannah tree species is crucial for the management of their genetic resources. In this study, we investigated the phylogeography of Parkia biglobosa and its modeled distribution under past and present climate conditions. This tree species is very valued and widespread in West Africa, providing edible and medicinal products. A large sample of 1610 individuals from 84 populations, distributed across 12 countries in Western and Central Africa, were genotyped using 8 nuclear microsatellites. Individual-based assignments clearly distinguished 3 genetic clusters, extreme West Africa (EWA), center of West Africa (CWA), and Central Africa (CA). Overall, estimates of genetic diversity were moderate to high, with lower values for populations in EWA (allelic richness after rarefaction [AR] = 6.4, expected heterozygosity [HE] = 0.78, and observed heterozygosity [HO] = 0.7) and CA (AR = 5.9, HE = 0.67, and HO = 0.61) compared with populations in CWA (AR = 7.3, HE = 0.79, and HO = 0.75). The overall population differentiation was found to be moderate (FST = 0.09). A highly significant isolation by distance pattern was detected, with a marked phylogeographic signature suggesting possible effects of past climate and geographic barriers to migration. Modeling the potential distribution of the species showed a contraction during the last glaciations followed by expansion events. The exploratory approximate Bayesian computation conducted suggests a best-supported scenario in which the cluster CWA traced back to the ancestral populations and a first split between EWA and CWA took place about 160000 years before present (BP), then a second split divided CA and CWA, about 100000 years BP. However, our genetic data do not enable us to conclusively distinguish among a few alternative possible scenarios.


Assuntos
Fabaceae/genética , Variação Genética , Filogeografia , África Central , África Ocidental , Núcleo Celular/genética , Fabaceae/classificação , Repetições de Microssatélites/genética
8.
PLoS One ; 12(9): e0184457, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880962

RESUMO

Over the last decades agroforestry parklands in Burkina Faso have come under increasing demographic as well as climatic pressures, which are threatening indigenous tree species that contribute substantially to income generation and nutrition in rural households. Analyzing the threats as well as the species vulnerability to them is fundamental for priority setting in conservation planning. Guided by literature and local experts we selected 16 important food tree species (Acacia macrostachya, Acacia senegal, Adansonia digitata, Annona senegalensis, Balanites aegyptiaca, Bombax costatum, Boscia senegalensis, Detarium microcarpum, Lannea microcarpa, Parkia biglobosa, Sclerocarya birrea, Strychnos spinosa, Tamarindus indica, Vitellaria paradoxa, Ximenia americana, Ziziphus mauritiana) and six key threats to them (overexploitation, overgrazing, fire, cotton production, mining and climate change). We developed a species-specific and spatially explicit approach combining freely accessible datasets, species distribution models (SDMs), climate models and expert survey results to predict, at fine scale, where these threats are likely to have the greatest impact. We find that all species face serious threats throughout much of their distribution in Burkina Faso and that climate change is predicted to be the most prevalent threat in the long term, whereas overexploitation and cotton production are the most important short-term threats. Tree populations growing in areas designated as 'highly threatened' due to climate change should be used as seed sources for ex situ conservation and planting in areas where future climate is predicting suitable habitats. Assisted regeneration is suggested for populations in areas where suitable habitat under future climate conditions coincides with high threat levels due to short-term threats. In the case of Vitellaria paradoxa, we suggest collecting seed along the northern margins of its distribution and considering assisted regeneration in the central part where the current threat level is high due to overexploitation. In the same way, population-specific recommendations can be derived from the individual and combined threat maps of the other 15 food tree species. The approach can be easily transferred to other countries and can be used to analyze general and species specific threats at finer and more local as well as at broader (continental) scales in order to plan more selective and efficient conservation actions in time. The concept can be applied anywhere as long as appropriate spatial data are available as well as knowledgeable experts.


Assuntos
Conservação dos Recursos Naturais/métodos , Alimentos , Acacia , Adansonia , Anacardiaceae , Annona , Balanites , Bombax , Burkina Faso , Mudança Climática , Ecossistema , Olacaceae , Tamarindus
9.
PLoS One ; 8(3): e59987, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23544118

RESUMO

Conservation priorities for Prunus africana, a tree species found across Afromontane regions, which is of great commercial interest internationally and of local value for rural communities, were defined with the aid of spatial analyses applied to a set of georeferenced molecular marker data (chloroplast and nuclear microsatellites) from 32 populations in 9 African countries. Two approaches for the selection of priority populations for conservation were used, differing in the way they optimize representation of intra-specific diversity of P. africana across a minimum number of populations. The first method (S1) was aimed at maximizing genetic diversity of the conservation units and their distinctiveness with regard to climatic conditions, the second method (S2) at optimizing representativeness of the genetic diversity found throughout the species' range. Populations in East African countries (especially Kenya and Tanzania) were found to be of great conservation value, as suggested by previous findings. These populations are complemented by those in Madagascar and Cameroon. The combination of the two methods for prioritization led to the identification of a set of 6 priority populations. The potential distribution of P. africana was then modeled based on a dataset of 1,500 georeferenced observations. This enabled an assessment of whether the priority populations identified are exposed to threats from agricultural expansion and climate change, and whether they are located within the boundaries of protected areas. The range of the species has been affected by past climate change and the modeled distribution of P. africana indicates that the species is likely to be negatively affected in future, with an expected decrease in distribution by 2050. Based on these insights, further research at the regional and national scale is recommended, in order to strengthen P. africana conservation efforts.


Assuntos
Clima , Conservação dos Recursos Naturais , Prunus africana/genética , Análise Espacial , Estatística como Assunto , África , Alelos , Análise por Conglomerados , Variação Genética , Geografia , Haplótipos/genética , Modelos Genéticos
10.
Plant Mol Biol ; 80(6): 555-69, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22960864

RESUMO

Several new initiatives have been launched recently to sequence conifer genomes including pines, spruces and Douglas-fir. Owing to the very large genome sizes ranging from 18 to 35 gigabases, sequencing even a single conifer genome had been considered unattainable until the recent throughput increases and cost reductions afforded by next generation sequencers. The purpose of this review is to describe the context for these new initiatives. A knowledge foundation has been acquired in several conifers of commercial and ecological interest through large-scale cDNA analyses, construction of genetic maps and gene mapping studies aiming to link phenotype and genotype. Exploratory sequencing in pines and spruces have pointed out some of the unique properties of these giga-genomes and suggested strategies that may be needed to extract value from their sequencing. The hope is that recent and pending developments in sequencing technology will contribute to rapidly filling the knowledge vacuum surrounding their structure, contents and evolution. Researchers are also making plans to use comparative analyses that will help to turn the data into a valuable resource for enhancing and protecting the world's conifer forests.


Assuntos
Genoma de Planta , Traqueófitas/genética , Cruzamento , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Perfilação da Expressão Gênica , Estudos de Associação Genética , Genômica/métodos , Genômica/tendências , Família Multigênica , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA de Plantas/genética , Pequeno RNA não Traduzido/genética , Transcriptoma
11.
Phytochemistry ; 83: 70-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22795601

RESUMO

Prunus africana--an evergreen tree found in Afromontane forests--is used in traditional medicine to cure benign prostate hyperplasia. Different bioactive constituents derived from bark extracts from 20 tree populations sampled throughout the species' natural range in Africa were studied by means of GC-MSD. The average concentration [mg/kgw/w] in increasing order was: lauric acid (18), myristic acid (22), n-docosanol (25), ferulic acid (49), ß-sitostenone (198), ß-sitosterol (490), and ursolic acid (743). The concentrations of many bark constituents were significantly correlated and concentration of n-docosanol was highly significantly correlated with all other analytes. Estimates of variance components revealed the highest variation among populations for ursolic acid (66%) and the lowest for ß-sitosterol (20%). In general, environmental parameters recorded (temperature, precipitation, altitude) for the samples sites were not correlated with the concentration of most constituents; however, concentration of ferulic acid was significantly correlated with annual precipitation. Because the concentration of compounds in bark extracts may be affected by tree size, the diameter of sampled plants at 1.3m tree height (as proxy of age) was recorded. The only relationship with tree diameter was a negative correlation with ursolic acid. Under the assumption that genetically less variable populations have less variable concentrations of bark compounds, correlations between variation parameters of the concentration and the respective genetic composition based on chloroplast and nuclear DNA markers were assessed. Only variation of ß-sitosterol concentration was significantly correlated with haplotypic diversity. The fixation index (F(IS)) was positively correlated with the variation in concentration of ferulic acid. Principal Components Analysis (PCA) indicated a weak geographic pattern. Mantel tests, however, revealed associations between the geographic patterns of bioactive constituents and the phylogenetic relationship among the populations sampled. This suggests an independent evolution of bark metabolism within different phylogeographical lineages, and the molecular phylogeographic pattern is partly reflected in the variation in concentration of bark constituents. The results have important implications for the design of strategies for the sustainable use and conservation of this important African tree species.


Assuntos
DNA de Cloroplastos/genética , DNA Ribossômico/genética , Prunus africana/química , Temperatura , África , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Álcoois Graxos/química , Álcoois Graxos/metabolismo , Marcadores Genéticos/genética , Ácidos Láuricos/química , Ácidos Láuricos/metabolismo , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Análise de Componente Principal , Prunus africana/metabolismo , Sitosteroides/química , Sitosteroides/metabolismo , Triterpenos/química , Triterpenos/metabolismo , Ácido Ursólico
12.
Nature ; 418(6899): 770-4, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12181565

RESUMO

Ecological orthodoxy suggests that old-growth forests should be close to dynamic equilibrium, but this view has been challenged by recent findings that neotropical forests are accumulating carbon and biomass, possibly in response to the increasing atmospheric concentrations of carbon dioxide. However, it is unclear whether the recent increase in tree biomass has been accompanied by a shift in community composition. Such changes could reduce or enhance the carbon storage potential of old-growth forests in the long term. Here we show that non-fragmented Amazon forests are experiencing a concerted increase in the density, basal area and mean size of woody climbing plants (lianas). Over the last two decades of the twentieth century the dominance of large lianas relative to trees has increased by 1.7-4.6% a year. Lianas enhance tree mortality and suppress tree growth, so their rapid increase implies that the tropical terrestrial carbon sink may shut down sooner than current models suggest. Predictions of future tropical carbon fluxes will need to account for the changing composition and dynamics of supposedly undisturbed forests.


Assuntos
Carbono/metabolismo , Ecossistema , Plantas/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Análise de Variância , Biomassa , Brasil , Dióxido de Carbono/metabolismo , América Central , Clima , Guiana , Chuva , Solo , América do Sul , Fatores de Tempo , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...