Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-503531

RESUMO

The SARS-CoV-2 virus is the causal agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19). There is an urgent need for potent, specific antiviral compounds against SARS-CoV-2. The 3C-like protease (3CLpro) is an essential enzyme for the replication of SARS-CoV-2 and other coronaviruses, and thus is a target for coronavirus drug discovery. Nearly all inhibitors of coronavirus 3CLpro reported so far are covalent inhibitors. Here, we report the development of specific, non-covalent inhibitors of 3CLpro. The most potent one, WU-04, effectively blocks SARS-CoV-2 replications in human cells with EC50 values in the 10-nM range. WU-04 also inhibits the 3CLpro of SARS-CoV and MERS-CoV with high potency, indicating that it is a pan-inhibitor of coronavirus 3CLpro. WU-04 showed anti-SARS-CoV-2 activity similar to that of PF-07321332 (Nirmatrelvir) in K18-hACE2 mice when the same dose was administered orally. Thus, WU-04 is a promising drug candidate for coronavirus treatment. One-Sentence SummaryA oral non-covalent inhibitor of 3C-like protease effectively inhibits SARS-CoV-2 replication.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250799

RESUMO

Antibody responses against the SARS-CoV-2 Spike protein correlate with protection against COVID-19. Serum neutralizing antibodies appear early after symptom onset following SARS-CoV-2 infection and can last for several months. Similarly, the messenger RNA vaccine, mRNA-1273, generates serum neutralizing antibodies that are detected through at least day 119. However, the recent emergence of the B.1.1.7 variant has raised significant concerns about the breadth of these neutralizing antibody responses. In this study, we used a live virus neutralization assay to compare the neutralization potency of sera from infected and vaccinated individuals against a panel of SARS-CoV-2 variants, including SARS-CoV-2 B.1.1.7. We found that both infection- and vaccine-induced antibodies were effective at neutralizing the SARS-CoV-2 B.1.1.7 variant. These findings support the notion that in the context of the UK variant, vaccine-induced immunity can provide protection against COVID-19. As additional SARS-CoV-2 viral variants continue to emerge, it is crucial to monitor their impact on neutralizing antibody responses following infection and vaccination.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20084442

RESUMO

SARS-CoV-2 is currently causing a devastating pandemic and there is a pressing need to understand the dynamics, specificity, and neutralizing potency of the humoral immune response during acute infection. Herein, we report the dynamics of antibody responses to the receptor-binding domain (RBD) of the spike protein and virus neutralization activity in 44 COVID-19 patients. RBD-specific IgG responses were detectable in all patients 6 days after PCR confirmation. Using a clinical isolate of SARS-CoV-2, neutralizing antibody titers were also detectable in all patients 6 days after PCR confirmation. The magnitude of RBD-specific IgG binding titers correlated strongly with viral neutralization. In a clinical setting, the initial analysis of the dynamics of RBD-specific IgG titers was corroborated in a larger cohort of PCR-confirmed patients (n=231). These findings have important implications for our understanding of protective immunity against SARS-CoV-2, the use of immune plasma as a therapy, and the development of much-needed vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...