Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 97(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34424315

RESUMO

We attempted to mimic aeolian ecosystems to examine how filters posed by regional characteristics can influence the establishment and growth of airborne microcolonisers of a common air source. Using a natural single source of aerosols we applied a combined microscopy and high-throughput sequencing approach to examine the diversity, settling and growth potential of air-dispersed microbes in water containers representing newly formed aquatic colonisation habitats of different trophic states and salinity. Heterotrophic microeukaryotes were favoured as initial settlers when nutrients were low, while autotrophs rapidly proliferated in the high-nutrient containers, possibly due to favourable germinating conditions for their preferred mode of dispersal with resting spores. Following settling of colonisers, we investigated two contrasting hypotheses: if the different water colonisation habitats harboured the same microbial communities after establishment and growth periods, this would point towards a selection of best-fit cosmopolitan colonisers, regardless of habitat-specific characteristics. Alternatively, community dissimilarities after the growth period would suggest a selection of settlers due to bottom-up controls combined with priority effects. Both analyses suggested that the structure of the microbial communities in the different colonisation habitats were driven by nutrient content and salinity, showing clustering to similar bottom-up forces and dissimilarities in significantly different colonisation habitats.


Assuntos
Água Doce , Microbiota , Nutrientes , Água
2.
Front Microbiol ; 12: 679743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248892

RESUMO

Aquaculture facilities such as fishponds are one of the most anthropogenically impacted freshwater ecosystems. The high fish biomass reared in aquaculture is associated with an intensive input into the water of fish-feed and fish excrements. This nutrients load may affect the microbial community in the water, which in turn can impact the fish health. To determine to what extent aquaculture practices and natural seasonal cycles affect the microbial populations, we characterized the microbiome of an inter-connected aquaculture system at monthly resolution, over 3 years. The system comprised two fishponds, where fish are grown, and an operational water reservoir in which fish are not actively stocked. Clear natural seasonal cycles of temperature and inorganic nutrients concentration, as well as recurring cyanobacterial blooms during summer, were observed in both the fishponds and the reservoir. The structure of the aquatic bacterial communities in the system, characterized using 16S rRNA sequencing, was explained primarily by the natural seasonality, whereas aquaculture-related parameters had only a minor explanatory power. However, the cyanobacterial blooms were characterized by different cyanobacterial clades dominating at each fishpond, possibly in response to distinct nitrogen and phosphate ratios. In turn, nutrient ratios may have been affected by the magnitude of fish feed input. Taken together, our results show that, even in strongly anthropogenically impacted aquatic ecosystems, the structure of bacterial communities is mainly driven by the natural seasonality, with more subtle effects of aquaculture-related factors.

3.
Chemosphere ; 274: 129778, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33548640

RESUMO

Cyanobacteria and their toxins present potential hazard to consumers of water from lakes, reservoirs and rivers, thus their removal via water treatment or at the source, is essential. Here, we report that alkyltrimethylammonium (ATMA) surfactants, such as octadecyltrimethylammonium (ODTMA) bromide, act as cyanocides that efficiently inhibit photosynthesis and growth of cyanobacteria. Green algae were found less sensitive than cyanobacteria to ATMA compounds. Fluorescence measurements and microscopic observations demonstrated that cyanobacteria cells (Aphanizomenon or Microcystis) disintegrate and lose their metabolic activity (photosynthesis) upon exposure to ATMA bromides (estimated ED50(1hr) ranged between 1.5 and 7 µM for ODTMA-Br or hexadecyltrimethylammonium (HDTMA) bromide). Other ATMA compounds, such as tetradecyltrimethylammonium (TDTMA) or dodecyltrimethylammonium (DDTMA) bromides had similar inhibitory effect but their toxicity to cyanobacteria (measured as ED50(1hr) for photosynthetic efficiency) decreased, as the length of the alkyl chain decreased. All ATMA compounds used in this study showed lower toxicity to green algae than to cyanobacteria. A toxicity mechanism for ATMA cations is proposed, based on real time fluorescence signals and on alteration of cell ultra-structure revealed by electron microscopy. The present study sheds light on the toxic effect of ATMA surfactants on cyanobacteria and its potential application for controlling the occurrence of cyanobacterial bloom in lakes, reservoirs or rivers to secure the safety of drinking water and to mitigate and manage bloom events.


Assuntos
Cianobactérias , Microcystis , Lagos , Fotossíntese , Tensoativos/toxicidade
4.
Harmful Algae ; 92: 101710, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113609

RESUMO

Cyanobacteria are notorious for producing water blooms and for toxin formation. Toxic cyanobacterial blooms present an ever-increasing serious threat to both the quality of drinking water and recreational uses and severely disrupt aquatic ecosystems, worldwide. In many cases, such blooms are dominated by toxic Microcystis sp. that produce a family of structurally similar hepatotoxins, known as microcystins (MCs). Here we present a retrospective analysis of Microcystis seasonal blooms from Lake Kinneret (Sea of Galilee, Israel) indicating that the population is composed of at least 25 different genotypes and two different chemo-types, whose relative abundance changes over decades. Based on a long-term record of biotic and abiotic parameters and laboratory experiments we propose that minor increase in water temperature, but not in salinity, may affect Microcystis community structure by changing the relative abundance of species/strains from toxic to less or non-toxic species.


Assuntos
Microcystis , Ecossistema , Estudos Retrospectivos , Estações do Ano , Temperatura
5.
Water Res ; 120: 165-173, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28486167

RESUMO

Cyanobacteria and their toxins present potential hazard to consumers of water from lakes, reservoirs and rivers, thus their removal via water treatment is essential. The capacity of nano-composites of Octadecyltrimethyl-ammonium (ODTMA) complexed with clay to remove cyanobacterial and their toxins from laboratory cultures and from lake water, was evaluated. Column filters packed with micelles of ODTMA complexed with bentonite and granulated were shown to significantly reduce the number of cyanobacteria cells or filaments and their corresponding toxins from laboratory cultures. Fluorescence measurements demonstrated that cyanobacteria cells lost their metabolic activity (photosynthesis) upon exposure to the micelle (ODTMA)-bentonite complex, or ODTMA monomers. The complex efficiently removed cyanobacteria toxins with an exceptional high removal rate of microcystins. The effectiveness of the complex in elimination of cyanobacteria was further demonstrated with lake water containing cyanobacteria and other phytoplankton species. These results and model calculations suggest that filters packed with granulated composites can secure the safety of drinking water in case of a temporary bloom event of toxic cyanobacteria.


Assuntos
Bentonita/metabolismo , Cianobactérias , Micelas , Compostos de Amônio , Toxinas Bacterianas , Cátions , Lagos , Microcistinas
6.
Mar Drugs ; 14(3)2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26938542

RESUMO

Exposure to ß-N-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D3BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%-32%), implying that D3BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery (<10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis.


Assuntos
Diamino Aminoácidos/análise , Cromatografia Líquida/métodos , Neurotoxinas/análise , Espectrometria de Massas em Tandem/métodos , Diamino Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Cianobactérias/metabolismo , Toxinas de Cianobactérias , Daphnia , Neurotoxinas/metabolismo , Reprodutibilidade dos Testes , Ácido Tricloroacético/química
7.
Front Microbiol ; 6: 1067, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483781

RESUMO

Akinetes are spore-like non-motile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Here, we demonstrate variations in cellular ultrastructure during akinete formation concomitant with accumulation of cyanophycin; a copolymer of aspartate and arginine that forms storage granules. Cyanophycin accumulation is initiated in vegetative cells few days post-exposure to akinete inducing conditions. This early accumulated cyanophycin pool in vegetative cells disappears as a nearby cell differentiates to an akinete and stores large pool of cyanophycin. During the akinete maturation, the cyanophycin pool is further increased and comprise up to 2% of the akinete volume. The cellular pattern of photosynthetic activity during akinete formation was studied by a nano-metric scale secondary ion mass spectrometry (NanoSIMS) analysis in (13)C-enriched cultures. Quantitative estimation of carbon assimilation in vegetative cells and akinetes (filament-attached and -free) indicates that vegetative cells maintain their basal activity while differentiating akinetes gradually reduce their activity. Mature-free akinetes practically lost their photosynthetic activity although small fraction of free akinetes were still photosynthetically active. Additional (13)C pulse-chase experiments indicated rapid carbon turnover during akinete formation and de novo synthesis of cyanophycin in vegetative cells 4 days post-induction of akinete differentiation.

8.
J Phycol ; 49(3): 580-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27007046

RESUMO

Akinetes are spore-like nonmotile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Various environmental factors were reported to trigger the differentiation of akinetes including light intensity and quality, temperature, and nutrient deficiency. Here, we report that deprivation of potassium ion (K(+) ) triggers akinete development in the cyanobacterium Aphanizomenon ovalisporum. Akinetes formation is initiated 3 d-7 d after an induction by K(+) depletion, followed by 2-3 weeks of a maturation process. Akinete formation occurs within a restricted matrix of environmental conditions such as temperature, light intensity or photon flux. Phosphate is essential for akinete maturation and P-limitation restricts the number of mature akinetes. DNA replication is essential for akinete maturation and akinete development is limited in the presence of Nalidixic acid. While our results unequivocally demonstrated the effect of K(+) deficiency on akinete formation in laboratory cultures of A. ovalisporum, this trigger did not cause Cylindrospermopsis raciborskii to produce akinetes. Anabaena crassa however, produced akinetes upon potassium deficiency, but the highest akinete concentration was achieved at conditions that supported vegetative growth. It is speculated that an unknown internal signal is associated with the cellular response to K(+) deficiency to induce the differentiation of a certain vegetative cell in a trichome into an akinete. A universal stress protein that functions as mediator in K(+) deficiency signal transduction cascade, may communicate between the lack of K(+) and akinete induction.

9.
Curr Biol ; 20(17): 1557-61, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20705465

RESUMO

The hepatotoxin cylindrospermopsin (CYN) produced by certain cyanobacteria, including Aphanizomenon ovalisporum (hereafter Aphanizomenon) [1], seriously affects lake water quality [2], but its biological role is not known. Strong correlation between Aphanizomenon abundance in Lake Kinneret, Israel, and alkaline phosphatase (APase) activity suggests that inorganic phosphate (Pi) limitation induces the PHO regulon and APase secretion [3]. Staining lake samples with DAPI [4] revealed a high level of polyphosphate bodies (PPB) in Aphanizomenon. Application of enzyme-labeled fluorescence (ELF-APase) [5] showed APase in various organisms, but not in Aphanizomenon. ELF-APase signals and extracellular APase activity in Aphanizomenon were detected only after exploiting PPB under prolonged Pi deprivation in cultures or toward the end of its autumn bloom. Pi deprivation of Aphanizomenon induces CYN production, high-affinity Pi uptake, and an internal, not external, APase. Addition of Aphanizomenon spent media or CYN to various phytoplanktons, including Chlamydomonas reinhardtii, induced genes typically upregulated under Pi limitation and a rise in extracellular APase activity, despite ample surrounding Pi. Coculturing Aphanizomenon with Chlamydomonas or with Debarya sp. showed positive ELF-APase signals, but not in Aphanizomenon. CYN producers promote Pi supply by inducing APase secretion by other phytoplanktons, possibly explaining their increased abundance despite reduced Pi supply from watersheds.


Assuntos
Fosfatase Alcalina/biossíntese , Cianobactérias/fisiologia , Fitoplâncton/enzimologia , Indução Enzimática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...