Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 113: 105487, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544570

RESUMO

DENV-2 was the main responsible for a 70% increase in dengue incidence in Brazil during 2019. That year, our metagenomic study by Illumina NextSeq on serum samples from acute febrile patients (n = 92) with suspected arbovirus infection, sampled in 22 cities of the state of Mato Grosso (MT), in the middle west of Brazil, revealed eight complete genomes and two near-complete sequences of DENV-2 genotype III, one Human parvovirus B19 genotype I (5,391 nt) and one Coxsackievirus A6 lineage D (4,514 nt). These DENV-2 sequences share the aminoacidic identities of BR4 lineage on E protein domains I, II and III, and were included in a clade with sequences of the same lineage circulating in the southeast of Brazil in the same year. Nevertheless, 11/34 non-synonymous mutations are unique to three strains inthis study, distributed in the E (n = 6), NS3 (n = 2) and NS5 (n = 3) proteins. Other 14 aa changes on C (n = 1), E (n = 3), NS1 (n = 2), NS2A (n = 1) and NS5 (n = 7) were first reported in a genotype III lineage, having been already reported only in other DENV-2 genotypes. All 10 sequences have mutations in the NS5 protein (14 different aa changes). Nine E protein aa changes found in two sequences, six of which are unique, are in the ectodomain; where the E:M272T change is on the hinge of the E protein at domain II, in a region critical for the anchoring to the host cell receptor. The NS5:G81R mutation, in the methyltransferase domain, was found in one strain of this study. Altogether, these data points to an important evolution of DENV-2 genotype III lineage BR4 during this outbreak in 2019 in MT. Genomic surveillance is essential to detect virus etiology and evolution, possibly related to immune evasion and viral fitness changes leading to future novel outbreaks.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Sorogrupo , Brasil/epidemiologia , Genótipo , Surtos de Doenças , Filogenia
2.
Virology ; 576: 18-29, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126430

RESUMO

Mato Grosso (MT) State is part of central western Brazil and has a tropical permissive environment that favors arbovirus outbreaks. A metagenomic approach was used to identify viral genomes in seven pools of serum from patients (n=65) with acute febrile disease. Seven chikungunya virus (CHIKV) genomes were determined, showing four amino acid changes found only in CHIKV genomes obtained in MT since 2018: nsP2:T31I, nsP3: A388V, E3:T201I and E3:H57R, in addition to other mutations in E1, nsP2 and nsP4. Six parvovirus B19 (B19V) genotype I genomes (4771-5131 nt) showed four aa alterations (NS1:N473D, R579Q; VP1:I716T; and 11 kDa:V44A) compared to most similar B19V from the USA. Coinfection between CHIKV and B19V was evidenced in 22/65 (33.8%) patients by RT‒PCR and PCR, respectively. Other viruses found in these pools include human pegivirus C, torque teno virus 3, an unclassified TTV and torque teno mini virus. Metagenomics represents a useful approach to detect viruses in the serum of acute febrile patients suspected of arbovirus disease.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vírus , Humanos , Aminoácidos/genética , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Vírus Chikungunya/genética , Febre , Genótipo , Mutação , Filogenia , Genoma Viral
3.
PLoS Negl Trop Dis ; 15(4): e0009290, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33861753

RESUMO

Since introduction into Brazil in 2014, chikungunya virus (CHIKV) has presented sustained transmission, although much is unknown about its circulation in the midwestern states. Here, we analyze 24 novel partial and near complete CHIKV genomes from Cuiaba, an urban metropolis located in the Brazilian midwestern state of Mato Grosso (MT). Nanopore technology was used for sequencing CHIKV complete genomes. Phylogenetic and epidemiological approaches were used to explore the recent spatio-temporal evolution and spread of the CHIKV-ECSA genotype in Midwest Brazil as well as in the Americas. Epidemiological data revealed a reduction in the number of reported cases over 2018-2020, likely as a consequence of a gradual accumulation of herd-immunity. Phylogeographic reconstructions revealed that at least two independent introductions of the ECSA lineage occurred in MT from a dispersion event originating in the northeastern region and suggest that the midwestern Brazilian region appears to have acted as a source of virus transmission towards Paraguay, a bordering South American country. Our results show a complex dynamic of transmission between epidemic seasons and suggest a possible role of Brazil as a source for international dispersion of the CHIKV-ECSA genotype to other countries in the Americas.


Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/transmissão , Vírus Chikungunya/genética , Genoma Viral/genética , Adolescente , Adulto , Teorema de Bayes , Brasil/epidemiologia , Febre de Chikungunya/diagnóstico , Vírus Chikungunya/isolamento & purificação , Monitoramento Epidemiológico , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Análise Espaço-Temporal , Sequenciamento Completo do Genoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...