Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401891

RESUMO

Klebsiella pneumoniae is the leading cause of neonatal sepsis and is increasingly difficult to treat due to antibiotic resistance. Vaccination represents a tractable approach to combat this resistant bacterium; however, there is currently not a licensed vaccine. Surface polysaccharides, including O-antigens of lipopolysaccharide, have long been attractive candidates for vaccine inclusion. Herein we describe the generation of a bioconjugate vaccine targeting seven predominant O-antigen subtypes in K. pneumoniae. Each bioconjugate was immunogenic in isolation, with limited cross-reactivity among subtypes. Vaccine-induced antibodies demonstrated varying degrees of binding to a wide variety of K. pneumoniae strains. Further, sera from vaccinated mice induced complement-mediated killing of many of these strains. Finally, increased capsule interfered with O-antigen antibodies' ability to bind and mediate killing of some K. pneumoniae strains. Taken together, these data indicate that this novel heptavalent O-antigen bioconjugate vaccine formulation exhibits limited efficacy against some, but not all, K. pneumoniae isolates.

2.
PLoS Pathog ; 19(5): e1011367, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146068

RESUMO

Klebsiella pneumoniae presents as two circulating pathotypes: classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae (hvKp). Classical isolates are considered urgent threats due to their antibiotic resistance profiles, while hvKp isolates have historically been antibiotic susceptible. Recently, however, increased rates of antibiotic resistance have been observed in both hvKp and cKp, further underscoring the need for preventive and effective immunotherapies. Two distinct surface polysaccharides have gained traction as vaccine candidates against K. pneumoniae: capsular polysaccharide and the O-antigen of lipopolysaccharide. While both targets have practical advantages and disadvantages, it remains unclear which of these antigens included in a vaccine would provide superior protection against matched K. pneumoniae strains. Here, we report the production of two bioconjugate vaccines, one targeting the K2 capsular serotype and the other targeting the O1 O-antigen. Using murine models, we investigated whether these vaccines induced specific antibody responses that recognize K2:O1 K. pneumoniae strains. While each vaccine was immunogenic in mice, both cKp and hvKp strains exhibited decreased O-antibody binding in the presence of capsule. Further, O1 antibodies demonstrated decreased killing in serum bactericidal assays with encapsulated strains, suggesting that the presence of K. pneumoniae capsule blocks O1-antibody binding and function. Finally, the K2 vaccine outperformed the O1 vaccine against both cKp and hvKp in two different murine infection models. These data suggest that capsule-based vaccines may be superior to O-antigen vaccines for targeting hvKp and some cKp strains, due to capsule blocking the O-antigen.


Assuntos
Infecções por Klebsiella , Vacinas , Camundongos , Animais , Virulência , Antígenos O , Klebsiella pneumoniae , Lipopolissacarídeos/metabolismo , Antibacterianos/farmacologia , Infecções por Klebsiella/prevenção & controle
3.
Glycobiology ; 33(2): 99-103, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36648443

RESUMO

Nonulosonic acids or non-2-ulosonic acids (NulOs) are an ancient family of 2-ketoaldonic acids (α-ketoaldonic acids) with a 9-carbon backbone. In nature, these monosaccharides occur either in a 3-deoxy form (referred to as "sialic acids") or in a 3,9-dideoxy "sialic-acid-like" form. The former sialic acids are most common in the deuterostome lineage, including vertebrates, and mimicked by some of their pathogens. The latter sialic-acid-like molecules are found in bacteria and archaea. NulOs are often prominently positioned at the outermost tips of cell surface glycans, and have many key roles in evolution, biology and disease. The diversity of stereochemistry and structural modifications among the NulOs contributes to more than 90 sialic acid forms and 50 sialic-acid-like variants described thus far in nature. This paper reports the curation of these diverse naturally occurring NulOs at the NCBI sialic acid page (https://www.ncbi.nlm.nih.gov/glycans/sialic.html) as part of the NCBI-Glycans initiative. This includes external links to relevant Carbohydrate Structure Databases. As the amino and hydroxyl groups of these monosaccharides are extensively derivatized by various substituents in nature, the Symbol Nomenclature For Glycans (SNFG) rules have been expanded to represent this natural diversity. These developments help illustrate the natural diversity of sialic acids and related NulOs, and enable their systematic representation in publications and online resources.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Animais , Ácidos Siálicos/química , Polissacarídeos/química , Monossacarídeos , Catalogação
4.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168360

RESUMO

Klebsiella pneumoniae is a concerning pathogen that is now the leading cause of neonatal sepsis and is increasingly difficult to treat due to heightened antibiotic resistance. Thus, there is an urgent need for preventive and effective immunotherapies targeting K. pneumoniae. Vaccination represents a tractable approach to combat this resistant bacterium in some settings; however, there is currently not a licensed K. pneumoniae vaccine available. K. pneumoniae surface polysaccharides, including the terminal O-antigen polysaccharides of lipopolysaccharide, have long been attractive candidates for vaccine inclusion. Herein we describe the generation of a bioconjugate vaccine targeting seven of the predominant O-antigen subtypes in K. pneumoniae. Each of the seven bioconjugates were immunogenic in isolation, with limited cross-reactivity among subtypes. Vaccine-induced antibodies demonstrated varying degrees of binding to a wide variety of K. pneumoniae strains, including suspected hypervirulent strains, all expressing different O-antigen and capsular polysaccharide combinations. Further, sera from vaccinated mice induced complement-mediated killing of many of these K. pneumoniae strains. Finally, we found that increased quantity of capsule interferes with O-antigen antibodies' ability to bind and mediate killing of some K. pneumoniae strains, including those carrying hypervirulence-associated genes. Taken together, these data indicate that this novel heptavalent O-antigen bioconjugate vaccine formulation exhibits promising efficacy against some, but not all, K. pneumoniae isolates.

5.
Appl Environ Microbiol ; 88(23): e0150422, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36350137

RESUMO

The rhamnose-glucose polysaccharide (Rgp) of Streptococcus thermophilus represents a major cell wall component, and the gene cluster responsible for its biosynthesis (termed rgp) has recently been identified. Significant genetic diversity among these loci has previously been reported, with five distinct rgp genotypes identified (designated rgp1 through -5). In the present study, two additional genotypes were identified (designated rgp6 and rgp7) through comparative analysis of the rgp loci of 78 Streptococcus thermophilus genomes. The rgp locus of a given S. thermophilus strain encoded the biosynthetic machinery for a rhamnan-rich backbone and a variable side chain component, the latter being associated with the highly specific interactions with many bacteriophages that infect this species. The chemical structure of the Rgp from three S. thermophilus strains, representing the rgp2, -3, and -4 genotypes, was elucidated, and based on bioinformatic and biochemical analyses we propose a model for Rgp biosynthesis in dairy streptococci. Furthermore, we exploited the genetic diversity within the S. thermophilus bipartite rgp locus to develop a two-step multiplex PCR system to classify strains based on gene content associated with the biosynthesis of the variable side chain structure as well as the rhamnan backbone. IMPORTANCE Streptococcus thermophilus is present and applied in industrial and artisanal dairy fermentations for the production of various cheeses and yogurt. During these fermentations, S. thermophilus is vulnerable to phage predation, and recent studies have identified the rhamnose-glucose polymer (Rgp) as the definitive receptor for at least one problematic phage species. Detailed analysis of S. thermophilus rgp loci has revealed an unprecedented level of genetic diversity, particularly within the glycosyltransferase-encoding gene content of a given locus. Our study shows that this genetic diversity reflects the biochemical structure(s) of S. thermophilus Rgp. As such, we harnessed the genetic diversity of S. thermophilus rgp loci to develop a two-step multiplex PCR method for the classification of strain collections and, ultimately, the formation of phage-robust rational starter sets.


Assuntos
Ramnose , Streptococcus thermophilus , Streptococcus thermophilus/genética , Parede Celular , Polissacarídeos , Iogurte
6.
ACS Omega ; 7(39): 34997-35013, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211050

RESUMO

Metabolic labeling paired with click chemistry is a powerful approach for selectively imaging the surfaces of diverse bacteria. Herein, we explored the feasibility of labeling the lipopolysaccharide (LPS) of Myxococcus xanthus-a Gram-negative predatory social bacterium known to display complex outer membrane (OM) dynamics-via growth in the presence of distinct azido (-N3) analogues of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo). Determination of the LPS carbohydrate structure from strain DZ2 revealed the presence of one Kdo sugar in the core oligosaccharide, modified with phosphoethanolamine. The production of 8-azido-8-deoxy-Kdo (8-N3-Kdo) was then greatly improved over previous reports via optimization of the synthesis of its 5-azido-5-deoxy-d-arabinose precursor to yield gram amounts. The novel analogue 7-azido-7-deoxy-Kdo (7-N3-Kdo) was also synthesized, with both analogues capable of undergoing in vitro strain-promoted azide-alkyne cycloaddition (SPAAC) "click" chemistry reactions. Slower and faster growth of M. xanthus was displayed in the presence of 8-N3-Kdo and 7-N3-Kdo (respectively) compared to untreated cells, with differences also seen for single-cell gliding motility and type IV pilus-dependent swarm community expansion. While the surfaces of 8-N3-Kdo-grown cells were fluorescently labeled following treatment with dibenzocyclooctyne-linked fluorophores, the surfaces of 7-N3-Kdo-grown cells could not undergo fluorescent tagging. Activity analysis of the KdsB enzyme required to activate Kdo prior to its integration into nascent LPS molecules revealed that while 8-N3-Kdo is indeed a substrate of the enzyme, 7-N3-Kdo is not. Though a lack of M. xanthus cell aggregation was shown to expedite growth in liquid culture, 7-N3-Kdo-grown cells did not manifest differences in intrinsic clumping relative to untreated cells, suggesting that 7-N3-Kdo may instead be catabolized by the cells. Ultimately, these data provide important insights into the synthesis and cellular processing of valuable metabolic labels and establish a basis for the elucidation of fundamental principles of OM dynamism in live bacterial cells.

7.
Microb Biotechnol ; 15(12): 2875-2889, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36259418

RESUMO

The first step in phage infection is the recognition of, and adsorption to, a receptor located on the host cell surface. This reversible host adsorption step is commonly followed by an irreversible event, which involves phage DNA delivery or release into the bacterial cytoplasm. The molecular components that trigger this latter event are unknown for most phages of Gram-positive bacteria. In the current study, we present a comparative genome analysis of three mutants of Lactococcus cremoris 3107, which are resistant to the P335 group phage TP901-1 due to mutations that affect TP901-1 DNA release. Through genetic complementation and phage infection assays, a predicted lactococcal three-component glycosylation system (TGS) was shown to be required for TP901-1 infection. Major cell wall saccharidic components were analysed, but no differences were found. However, heterologous gene expression experiments indicate that this TGS is involved in the glucosylation of a cell envelope-associated component that triggers TP901-1 DNA release. To date, a saccharide modification has not been implicated in the DNA delivery process of a Gram-positive infecting phage.


Assuntos
Bacteriófagos , Lactococcus lactis , Siphoviridae , Siphoviridae/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , DNA/metabolismo
8.
Carbohydr Res ; 522: 108704, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306549

RESUMO

Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and stillbirths. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the structure of the lipopolysaccharide O-chain (OPS) of three strains of F. nucleatum HM-994, HM-995, and HM-997, isolated from cancerous tissues: -3-ß-D-ManNAc4Lac-4-ß-D-Glc6OAc-3-ß-D-FucNAc4N- HM-994. -4-α-L-GalNHBuA-3-α-D-QuiNAc4NHBu-3-α-L-Rha-6-α-D-GalN- HM-995. -3-[α-L-GulNAcA-4-]-ß-D-Glc-4-ß-D-ManNAcAN-3-ß-D-FucNAc4N-3- HM-997. where HBu is 3-hydroxybutyryl, ManNAc4Lac is 4-O-(1-carboxyethyl)-2-acetamido-2-deoxy-mannose. All monosaccharides are in the pyranose form. The structures were determined using standard NMR (2D homo- and hetero-nuclear techniques), MS and chemical methods following gtypical LPS isolation and purification methods. In some cases polymeric material was further degraded in order to produce compounds that gave improved NMR spectra that were easier to be fully interpreted. Structure of the OPS from strain HM-994 was identical to the OPS from F. nucleatum strain MJR 7757 B. Structures of the OPS from HM-995 and HM-997 are novel and to our knowledge have not been previously reported and include the often observed 6-deoxy- sugars found in several F. nucleatum strains and butyrate rather than acetate modifications in the HM-995 strain. This structural knowledge adds to the ever increasing variation found in LPS O-antigen structures from F. nucleatum strain from both oral and cancerous origin and suggests that there may be a multitude of different LPS O-antigen structures elaborated by this organism that may present challenges to any serotyping efforts.


Assuntos
Fusobacterium nucleatum , Antígenos O , Gravidez , Feminino , Humanos , Antígenos O/química , Fusobacterium nucleatum/química , Lipopolissacarídeos , Composição de Bases , RNA Ribossômico 16S , Filogenia , Análise de Sequência de DNA , Monossacarídeos
9.
Carbohydr Res ; 521: 108648, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030633

RESUMO

Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and stillbirths. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report four new structures of the lipopolysaccharide O-chain (OPS) from five strains of F. nucleatum CTX47T, CC2_6JVN3, CC2_3FMU1, CC2_1JVN3, HM-996, isolated from cancerous tissues. Three of the four structures have a common sequence of hexose-diaminofucose-hexitol-phosphate in the main chain.


Assuntos
Fusobacterium nucleatum , Antígenos O , Animais , Anticorpos Monoclonais , Composição de Bases , Feminino , Fusobacterium nucleatum/química , Hexoses , Humanos , Lipopolissacarídeos , Camundongos , Antígenos O/química , Fosfatos , Filogenia , Gravidez , RNA Ribossômico 16S , Análise de Sequência de DNA , Álcoois Açúcares
10.
ACS Infect Dis ; 8(7): 1336-1346, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653593

RESUMO

Pseudomonas aeruginosa produces a variety of cell surface glycans. Previous studies identified a common polysaccharide (PS) antigen often termed A-band PS that was composed of a neutral d-rhamnan trisaccharide repeating unit as a relatively conserved cell surface carbohydrate. However, nuclear magnetic resonance (NMR) spectra and chemical analysis of A-PS preparations showed the presence of several additional components. Here, we report the characterization of the carbohydrate component responsible for these signals. The carbohydrate antigen consists of an immunogenic methylated rhamnan oligosaccharide at the nonreducing end of the A-band PS. Initial studies performed with the isolated antigen permitted the production of conjugates that were used to immunize mice and rabbits and generate monoclonal and polyclonal antibodies. The polyclonal antibodies were able to recognize the majority of P. aeruginosa strains in our collection, and three monoclonal antibodies were generated, one of which was able to recognize and facilitate opsonophagocytic killing of a majority of P. aeruginosa strains. This monoclonal antibody was able to recognize all P. aeruginosa strains in our collection that includes clinical and serotype strains. Synthetic oligosaccharides (mono- to pentasaccharides) representing the terminal 3-O-methyl d-rhamnan were prepared, and the trisaccharide was identified as the antigenic determinant required to effectively mimic the natural antigen recognized by the broadly cross-reactive monoclonal antibody. These data suggest that there is considerable promise in this antigen as a vaccine or therapeutic target.


Assuntos
Desoxiaçúcares , Pseudomonas aeruginosa , Animais , Anticorpos Monoclonais , Desoxiaçúcares/química , Epitopos , Mananas , Camundongos , Polissacarídeos , Coelhos , Trissacarídeos
11.
ACS Infect Dis ; 8(7): 1347-1355, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674342

RESUMO

Pseudomonas aeruginosa was added to the World Health Organization's priority pathogen list for research and development of new antibiotics in 2017. Alongside the development of new antibiotics to fight antimicrobial-resistant P. aeruginosa, vaccines would be an appealing addition to the toolbox health professionals have against this bacteria, which causes life-threatening respiratory infections. Recently, the structure of a novel immunogenic terminal carbohydrate moiety on the cell surface of P. aeruginosa was elucidated, consisting of a 3-O-methyl (1→4)-α-d-rhamnan pentasaccharide. As isolating this oligosaccharide from P. aeruginosa in sufficient amounts for producing a conjugate vaccine is challenging, herein we describe the synthesis of 3-O-methyl d-rhamnose oligosaccharide. We also report the conjugation of the synthetic pentasaccharide to human serum albumin and its resulting immunogenicity.


Assuntos
Mananas , Pseudomonas aeruginosa , Antibacterianos , Desoxiaçúcares , Humanos , Oligossacarídeos
12.
Carbohydr Res ; 517: 108576, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35526359

RESUMO

Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and stillbirths. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the structures of the lipopolysaccharide O-chain (OPS) of two strains of F. nucleatum, SB-106CP and HM-992, both isolated from cancerous tissues. These strains elaborate the same sugar chain, differing only by their N-acylation pattern: -6-α-D-GlcNAc-4-ß-D-GlcNHBu3NABuA-3-ß-D-QuiNAc4NABuAc- SB-106CP -6-α-D-GlcNAc-4-ß-D-GlcNHBu3NABuA-3-ß-D-QuiNAc4NAc- HM-992 ABu = (R)-3-amino-butyryl AbuAc = (R)-3-N-acetyl-3-aminobutyryl HBu = (R)-3-hydroxy-butyryl All monosaccharides are in the pyranose form. Previously we published the structure of the OPS from F. nucleatum 12230, a transtracheal isolate, which had similar sugar chain, differing by replacement of GlcNAc with Glc and a different acylation pattern: -6-α-d-Glc-4-ß-d-GlcNHBu3NHBuA-3-ß-d-QuiNAc4NABu- A mouse monoclonal antibody specific for the 12230 O-antigen did not cross react with the LPS of strains SB-106CP and HM-992 confirming the structural differentiation.


Assuntos
Fusobacterium nucleatum , Antígenos O , Animais , Composição de Bases , Fusobacterium nucleatum/química , Lipopolissacarídeos , Camundongos , Monossacarídeos , Antígenos O/química , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
13.
Glycobiology ; 32(7): 629-644, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481895

RESUMO

The glycosylation of structural proteins is a widespread posttranslational modification in Archaea. Although only a handful of archaeal N-glycan structures have been determined to date, it is evident that the diversity of structures expressed is greater than in the other domains of life. Here, we report on our investigation of the N- and O-glycan modifications expressed by Methanoculleus marisnigri, a mesophilic methanogen from the Order Methanomicrobiales. Unusually, mass spectrometry (MS) analysis of purified archaella revealed no evidence for N- or O-glycosylation of the constituent archaellins, In contrast, the S-layer protein, identified as a PGF-CTERM sorting domain-containing protein encoded by MEMAR_RS02690, is both N- and O-glycosylated. Two N-glycans were identified by NMR and MS analysis: a trisaccharide α-GlcNAc-4-ß-GlcNAc3NGaAN-4-ß-Glc-Asn where the second residue is 2-N-acetyl, 3-N-glyceryl-glucosamide and a disaccharide ß-GlcNAc3NAcAN-4-ß-Glc-Asn, where the terminal residue is 2,3 di-N-acetyl-glucosamide. The same trisaccharide was also found N-linked to a type IV pilin. The S-layer protein is also extensively modified in the threonine-rich region near the C-terminus with O-glycans composed exclusively of hexoses. While the S-layer protein has a predicted PGF-CTERM processing site, no evidence of a truncated and lipidated C-terminus, the expected product of processing by an archaeosortase, was found. Finally, NMR also identified a polysaccharide expressed by M. marisnigri and composed of a repeating tetrasaccharide unit of [-2-ß-Ribf-3-α-Rha2OMe-3-α-Rha - 2-α-Rha-]. This is the first report of N- and O-glycosylation in an archaeon from the Order Methanomicrobiales.


Assuntos
Glicoproteínas de Membrana , Methanomicrobiaceae , Glicoproteínas de Membrana/metabolismo , Methanomicrobiaceae/metabolismo , Polissacarídeos/química , Trissacarídeos
14.
Appl Environ Microbiol ; 88(1): e0172321, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669424

RESUMO

Four bacteriophage-insensitive mutants (BIMs) of the dairy starter bacterium Streptococcus thermophilus UCCSt50 were isolated following challenge with Brussowvirus SW13. The BIMs displayed an altered sedimentation phenotype. Whole-genome sequencing and comparative genomic analysis of the BIMs uncovered mutations within a family 2 glycosyltransferase-encoding gene (orf06955UCCSt50) located within the variable region of the cell wall-associated rhamnose-glucose polymer (Rgp) biosynthesis locus (designated the rgp gene cluster here). Complementation of a representative BIM, S. thermophilus B1, with native orf06955UCCSt50 restored phage sensitivity comparable to that of the parent strain. Detailed bioinformatic analysis of the gene product of orf06955UCCSt50 identified it as a functional homolog of the Lactococcus lactis polysaccharide pellicle (PSP) initiator WpsA. Biochemical analysis of cell wall fractions of strains UCCSt50 and B1 determined that mutations within orf06955UCCSt50 result in the loss of the side chain decoration from the Rgp backbone structure. Furthermore, it was demonstrated that the intact Rgp structure incorporating the side chain structure is essential for phage binding through fluorescence labeling studies. Overall, this study confirms that the rgp gene cluster of S. thermophilus encodes the biosynthetic machinery for a cell surface-associated polysaccharide that is essential for binding and subsequent infection by Brussowviruses, thus enhancing our understanding of S. thermophilus phage-host dynamics. IMPORTANCE Streptococcus thermophilus is an important starter culture bacterium in global dairy fermentation processes, where it is used for the production of various cheeses and yogurt. Bacteriophage predation of the species can result in substandard product quality and, in rare cases, complete fermentation collapse. To mitigate these risks, it is necessary to understand the phage-host interaction process, which commences with the recognition of, and adsorption to, specific host-encoded cell surface receptors by bacteriophage(s). As new groups of S. thermophilus phages are being discovered, the importance of underpinning the genomic elements that specify the surface receptor(s) is apparent. Our research identifies a single gene that is critical for the biosynthesis of a saccharidic moiety required for phage adsorption to its S. thermophilus host. The acquired knowledge provides novel insights into phage-host interactions for this economically important starter species.


Assuntos
Bacteriófagos , Siphoviridae , Fagos de Streptococcus , Bacteriófagos/genética , Polissacarídeos , Fagos de Streptococcus/genética , Streptococcus thermophilus/genética
15.
ACS Infect Dis ; 7(11): 3111-3123, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34633812

RESUMO

Group B Streptococcus (GBS) is a leading cause of neonatal infections and invasive diseases in nonpregnant adults worldwide. Developing a protective conjugate vaccine targeting the capsule of GBS has been pursued for more than 30 years; however, it has yet to yield a licensed product. In this study, we present a novel bioconjugation platform for producing a prototype multivalent GBS conjugate vaccine and its subsequent analytical and immunological characterizations. Using a glycoengineering strategy, we generated strains of Escherichia coli that recombinantly express the type Ia, type Ib, and type III GBS capsular polysaccharides. We then combined the type Ia-, Ib-, and III-capsule-expressing E. coli strains with an engineered Pseudomonas aeruginosa exotoxin A (EPA) carrier protein and the PglS oligosaccharyltransferase. Coexpression of a GBS capsule, the engineered EPA protein, and PglS enabled the covalent attachment of the target GBS capsule to an engineered serine residue on EPA, all within the periplasm of E. coli. GBS bioconjugates were purified, analytically characterized, and evaluated for immunogenicity and functional antibody responses. This proof-of-concept study signifies the first step in the development of a next-generation multivalent GBS bioconjugate vaccine, which was validated by the production of conjugates that are able to elicit functional antibodies directed against the GBS capsule.


Assuntos
Escherichia coli , Infecções Estreptocócicas , Adulto , Anticorpos Antibacterianos , Escherichia coli/genética , Humanos , Recém-Nascido , Infecções Estreptocócicas/prevenção & controle , Streptococcus agalactiae/genética , Vacinas Combinadas
16.
Glycobiology ; 31(11): 1520-1530, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34473830

RESUMO

Acinetobacter baumannii has become a leading cause of bacterial nosocomial infections, in part, due to its ability to resist desiccation, disinfection and antibiotics. Several factors contribute to the tenacity and virulence of this pathogen, including production of a broad range of surface glycoconjugates, secretory systems and efflux pumps. We became interested in examining the importance of trehalose in A. baumannii after comparing intact bacterial cells by high-resolution magic angle spinning nuclear magnetic resonance and by noting high levels of this disaccharide, obscuring all other resonances in the spectrum. Since this was observed under normal growth conditions, we speculated that trehalose must serve additional functions beyond osmolyte homeostasis. Using the virulent isolate A. baumannii AB5075 and mutants in the trehalose synthesis pathway, osmoregulatory trehalose synthesis proteins A and B (△otsA and △otsB), we found that the trehalose-deficient △otsA showed increased sensitivity to desiccation, colistin, serum complement and peripheral blood mononuclear cells, while trehalose-6-phosphate producing △otsB behaved similar to the wild-type. The △otsA mutant also demonstrated increased membrane permeability and loss of capsular polysaccharide. These findings demonstrate that trehalose deficiency leads to loss of virulence in A. baumannii AB5075.


Assuntos
Acinetobacter baumannii/química , Permeabilidade da Membrana Celular/genética , Monoéster Fosfórico Hidrolases/genética , Polissacarídeos/metabolismo , Trealose/metabolismo , Acinetobacter baumannii/patogenicidade , Mutação , Monoéster Fosfórico Hidrolases/metabolismo , Polissacarídeos/deficiência , Trealose/deficiência , Trealose/genética , Virulência
17.
PLoS Pathog ; 17(2): e1009291, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529209

RESUMO

Acinetobacter baumannii is a highly antibiotic-resistant bacterial pathogen for which novel therapeutic approaches are needed. Unfortunately, the drivers of virulence in A. baumannii remain uncertain. By comparing genomes among a panel of A. baumannii strains we identified a specific gene variation in the capsule locus that correlated with altered virulence. While less virulent strains possessed the intact gene gtr6, a hypervirulent clinical isolate contained a spontaneous transposon insertion in the same gene, resulting in the loss of a branchpoint in capsular carbohydrate structure. By constructing isogenic gtr6 mutants, we confirmed that gtr6-disrupted strains were protected from phagocytosis in vitro and displayed higher bacterial burden and lethality in vivo. Gtr6+ strains were phagocytized more readily and caused lower bacterial burden and no clinical illness in vivo. We found that the CR3 receptor mediated phagocytosis of gtr6+, but not gtr6-, strains in a complement-dependent manner. Furthermore, hypovirulent gtr6+ strains demonstrated increased virulence in vivo when CR3 function was abrogated. In summary, loss-of-function in a single capsule assembly gene dramatically altered virulence by inhibiting complement deposition and recognition by phagocytes across multiple A. baumannii strains. Thus, capsular structure can determine virulence among A. baumannii strains by altering bacterial interactions with host complement-mediated opsonophagocytosis.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/patogenicidade , Cápsulas Bacterianas/fisiologia , Fagócitos/virologia , Fagocitose , Polissacarídeos Bacterianos/química , Virulência , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Células RAW 264.7
18.
Glycobiology ; 31(3): 307-314, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839812

RESUMO

We describe the structural characterization of the capsular polysaccharides (CPSs) of Pasteurella multocida serotypes B and E. CPS was isolated following organic solvent precipitation of the supernatant from flask grown cells. Structural analysis utilizing nuclear magnetic resonance spectroscopy enabled the determination of the CPS structures and revealed significant structural similarities between the two serotypes, but also provided an explanation for the serological distinction. This observation was extended by the development of polyclonal sera to the glycoconjugate of serotype B CPS that corroborated the structural likenesses and differences. Finally, identification of these structures enabled a more comprehensive interrogation of the genetic loci and prediction of roles for some of the encoded proteins in repeat unit biosynthesis.


Assuntos
Pasteurella multocida/química , Polissacarídeos , Configuração de Carboidratos , Pasteurella multocida/imunologia , Polissacarídeos/química , Polissacarídeos/genética , Polissacarídeos/imunologia , Sorotipagem
19.
Carbohydr Res ; 499: 108198, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33280822

RESUMO

Fusobacterium nucleatum is a gram-negative bacterium, part of the normal human microflora. It is associated with various health complications, including periodontitis and colorectal cancer. Its surface is covered with lipopolysaccharide, which interacts with the immune system and can be involved in various processes in health and disease conditions. Here we present the results of structural analysis of core oligosaccharides from the lipopolysaccharides of several strains of F. nucleatum. Pure compounds were isolated using mild acid hydrolysis or alkaline deacylation of the lipopolysaccharides and analyzed by NMR spectroscopy, mass-spectrometry and chemical methods. All cores analyzed had a common octasaccharide region, including five heptose residues and a non-phosphorylated 3-deoxy-d-manno-oct-2-ulosonic acid residue. The common region is substituted with different additional components specific for each strain. By structure type the F. nucleatum core is similar to that produced by Aeromonas.


Assuntos
Fusobacterium nucleatum/química , Lipopolissacarídeos/química , Oligossacarídeos/química , Configuração de Carboidratos , Espectroscopia de Ressonância Magnética , Oligossacarídeos/isolamento & purificação
20.
Carbohydr Res ; 498: 108182, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33137586

RESUMO

The structure of the polysaccharide O-chain of the lipopolysaccharide isolated from the sequenced strain Chromobacterium violaceum ATCC 12472 (NCTC 9757) was investigated by chemical and NMR analyses, and concluded to be -4-α-Leg5Ac7Ala-4-ß-d-ManNAlaA3OAc-3-α-d-GlcNAc-where Leg5Ac7Ala indicates 5-acetamido-7-alanylamido-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulopyranosonic acid and ManNAlaA3OAc 3-O-acetyl-2-alanylamido-2-deoxymannopyranuronic acid. The structure of the core with one repeating unit of the polysaccharide attached was also analyzed, and it was found that the O-chain polysaccharide is linked to the core via ß-GlcpNAc, as opposite to α-GlcpNAc inside the O-chain.


Assuntos
Chromobacterium/química , Lipopolissacarídeos/química , Sequência de Carboidratos , Chromobacterium/metabolismo , Concentração de Íons de Hidrogênio , Lipopolissacarídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...