Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37687536

RESUMO

Morphological transformations in emulsions of cellulose and polyacrylonitrile (PAN) ternary copolymers containing acrylonitrile, methyl acrylate, and methylsulfonate comonomers in N-methylmorpholine-N-oxide were studied over the entire range of concentrations depending on temperature and intensity of the deformation action. Based on the morphological and rheological features of the system, the temperature-concentration range of spinnability of mixed solutions was determined, and composite fibers were spun. The fibers are characterized by a heterogeneous fibrillar texture. Studies of the structure of the fibers, carried out using X-ray diffraction analysis, revealed a decrease in cellulose crystallinity with an increase in the content of PAN. The study of the thermal properties of the obtained fibers, carried out using DSC, and chemical transformations in them in a wide temperature range by high-temperature diffuse reflection IR spectroscopy made it possible to reveal a new intense exothermic peak on the thermograms at 360 °C, which according to the IR spectra corresponds to the transformation of intermacromolecular physical interactions of the PAN and cellulose into covalent bonds between polymers. In addition, the ester groups found during the thermal treatment of the PAN part of the composite fibers in the pyrolysis zone can have a key effect on the process of their further carbonization.

2.
Membranes (Basel) ; 13(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505033

RESUMO

Cellulose and copolymers of acrylonitrile (PAN) are characterized by their chemical resistance to several conventional solvents. Therefore, these polymers are often used to obtain membranes for the recovery of such solvents. In this work, for the first time, composite membranes formed from highly concentrated mixed solutions based on cellulose and PAN are considered (the total content of polymers is 18 wt.%). For mixed solutions, the morphology and rheological behavior were evaluated. It is shown that the resulting solutions are two-phase, and their morphology depends on the components' ratio and the system's history. The non-monotonous change in the viscosity with the PAN content indicates a specific interaction of cellulose and PAN in N-methylmorpholine-N-oxide solutions. The rheological behavior of mixed solutions allows for their processing in conditions identical to those of cellulose solutions. The introduction of PAN into the cellulose matrix promotes a decrease in the structural order in the system, affecting the membranes' transport properties. For composite membranes, it was found that with an increase in the content of the PAN phase, the retention of Remazol and Orange decreases, while the observed values are several times higher than those for cellulose membranes. The permeability of ethanol increases with increasing terpolymer content.

3.
Polymers (Basel) ; 15(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36771993

RESUMO

The manufacturing of paper with new functional properties is a current problem today. A method of modifying the surface layer of paper by the partial dissolution of cellulose on its surface is proposed. N-Methylmorpholine-N-oxide (NMMO) is proposed for use as a solvent, the regeneration of which provides an environmentally friendly process. It was shown that among the possible hydrate forms of the solvent, the monohydrate and higher-melting forms are optimal for modifying the paper surface. The temperature-time modes of processing were revealed and the weight gain and density increase in the course of modification were estimated. The structural and morphological features of the original and modified paper were studied by X-ray imaging and scanning microscopy. The NMMO surface treatment makes it possible to vary the air permeability of the paper, making it practically non-permeable. The capillary and pore system were radically transformed after the partial dissolution of cellulose and its coagulation, as the formed cellulose film isolates them, which leads to a decrease in surface absorbency. The processing conditions allowing for the optimization of the optical and strength properties of the modified paper samples are revealed. The resulting paper with a modified N-methylmorpholine-N-oxide surface layer can be used for printing valuable documents.

4.
Polymers (Basel) ; 14(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890637

RESUMO

An original method is proposed for preparing highly concentrated solutions of PAN copolymer in N-methylmorpholine-N-oxide (NMMO) and forming membranes for nanofiltration from these solutions. The high activity of the solvent with respect to the polymer provides short preparation time of spinning solutions in comparison with PAN solutions obtained in other solvents. The use of the rheological approach made it possible to find the optimal concentration for obtaining membranes. The formation of PAN membranes from the obtained solutions is proposed by the rolling method. The morphology of the formed membranes depends on the method of removing the precipitant from the sample. The features of the formed morphology of PAN membranes were studied by scanning electron microscopy. It was revealed that the use of water as a rigid precipitant leads to the formation of a homogeneous and symmetric morphology in the membrane. The average pore sizes in the membrane have been obtained by porosimetry. The study of the separating properties of PAN membranes revealed noteworthy values of the permeability and rejection for the anionic dyes Orange II and Remazol Brilliant Blue (74 and 97%, respectively). The mechanical properties of PAN membranes from solutions in NMMO are not inferior to analogs formed from commercially used direct solvents.

5.
Carbohydr Polym ; 254: 117472, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357926

RESUMO

The evolution of structural-morphological transformations of cellulose membranes obtained from solutions in N-methylmorpholine-N-oxide through various temperature isobutanol coagulation baths and subsequent treatment with water and their transport properties were studied. Using SEM, it was found that during coagulation in water and drying of the membranes, a uniform monolithic microheterogeneous texture was formed. The replacement of an aqueous precipitation bath with an isobutanol one leads to the formation of a porous structure with wide pore size and shape distributions. With an increase in precipitant temperature in the as-formed membrane, transverse tunnel cavities are formed with respect to the membrane-forming axis, which collapses when the membrane is washed with water, forming a dense texture with a non-uniform membrane volume. The mechanical properties of the obtained membranes were determined and a mechanism is proposed that allows their values to be correlated with structural-morphological and transport properties.


Assuntos
Butanóis/química , Celulose/química , Óxidos N-Cíclicos/química , Membranas Artificiais , Morfolinas/química , Celulose/ultraestrutura , Porosidade , Soluções , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...