Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 54: 110517, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847010

RESUMO

This work systematically investigates the effect of methanol (MeOH) in a wide range of concentrations (0, 1, 2.5, 5, 10, 20, 30, 40, and 50 mass%) on methane hydrate nucleation and growth kinetics. Multiple measurements of gas hydrate onset temperatures and pressures for CH4-H2O and CH4-MeOH-H2O systems were performed by ramp cooling experiments (1 K/h) using sapphire rocking cell RCS6 apparatus. The dataset comprises 96 ramp experiments conducted under identical initial conditions for each solution (gas pressure of 8.1 MPa at 295 K). The reported hydrate onset temperatures and pressures range within 248-282 K and 6.2-7.5 MPa, respectively. The methane hydrate onset subcooling was calculated using literature data on the three-phase gas-aqueous solution-gas hydrate equilibrium for the studied systems. The study determined the numerical values of the shape and scale parameters of gamma distributions that describe the empirical dependences of methane hydrate nucleation cumulative probability as a function of hydrate onset subcooling in the aqueous methanol solutions. Gas uptake curves were analyzed to characterize the kinetics of methane hydrate growth under polythermal conditions at different methanol concentrations.

2.
Data Brief ; 53: 110138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38379890

RESUMO

In order to systematically study the synergistic effect of gas hydrate inhibition with mixtures of methanol (MeOH) and magnesium chloride (MgCl2), the impact of these compounds on the thermodynamic stability of methane hydrate in the systems of CH4-MeOH-H2O, CH4-MgCl2-H2O, and CH4-MeOH-MgCl2-H2O was experimentally investigated. The pressure and temperature conditions of the three-phase vapor-aqueous solution-gas hydrate equilibrium were determined for these systems. The resulting dataset has 164 equilibrium points within the range of 234-289 K and 3-13 MPa. All equilibrium points were measured as the endpoint of methane hydrate dissociation during the heating stage. The phase boundaries of methane hydrate were identified for 8 systems with MeOH (up to 60 mass%), 5 MgCl2 solutions (up to 26.7 mass%), and 14 mixtures of both inhibitors. Most equilibrium points were measured using a ramp heating technique (0.1 K/h) under isochoric conditions when the fluids were stirred at 600 rpm. It was found that even a 0.5 K/h heating rate for the CH4-MgCl2-H2O system at low salt concentrations, along with all mixed aqueous solutions with methanol, gives results that do not differ from 0.1 K/h, considering the measurement uncertainties. Most measurements for the CH4-MgCl2-H2O system at high salt content were acquired using a step heating technique. The coefficients of the empirical equations approximating the equilibrium points for each inhibitor concentration were defined. The change in the slope parameter of the empirical equation was analyzed as a function of inhibitor content. Correlations that accurately describe the thermodynamic inhibition effect of methane hydrate with methanol and magnesium chloride on a mass% and mol% scale were obtained. The freezing temperatures of single and mixed aqueous solutions of methanol and magnesium chloride were determined experimentally to confirm the thermodynamic consistency of the methane hydrate equilibrium data.

3.
Data Brief ; 49: 109303, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37360673

RESUMO

The equilibrium conditions of sII methane/propane hydrates have been experimentally determined for the C3H8/CH4-H2O-urea system. The equilibrium dissociation temperatures and pressures of sII hydrates span a wide P,T-range (266.7-293.9 K; 0.87-9.49 MPa) and were measured by varying the feed mass fraction of urea in solution from 0 to 50 mass%. The experimental points at feed urea concentration ≤ 40 mass% correspond to the V-Lw-H equilibrium (gas-aqueous urea solution-gas hydrate). A four-phase V-Lw-H-Su equilibrium (with an additional phase of solid urea) was observed because the solubility limit of urea in water was reached for all points at a feed mass fraction of 50 mass% and for one point at 40 mass% (266.93 K). Gas hydrate equilibria were measured using a high-pressure rig GHA350 under isochoric conditions with rapid fluid stirring and slow ramp heating of 0.1 K/h. Each measured point represents complete dissociation of the sII hydrate. The phase equilibrium data was compared with the literature reported for the C3H8/CH4-H2O and CH4-H2O-urea systems. A comprehensive analysis of the thermodynamic inhibition effect of urea to sII C3H8/CH4 hydrates on pressure and concentration of the inhibitor was carried out. The phase composition of the samples was analyzed by powder X-ray diffractometry at 173 K.

4.
Adv Mater ; 35(31): e2300403, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37161663

RESUMO

Electron transport layers (ETLs) with pronounced electron conducting capability are essential for high performance planar perovskite photovoltaics, with the great challenge being that the most widely used metal oxide ETLs unfortunately have intrinsically low carrier mobility. Herein is demonstrated that by simply addressing the carrier loss at particle boundaries of TiO2 ETLs, through embedding in ETL p-n heterointerfaces, the electron mobility of the ETLs can be boosted by three orders of magnitude. Such embedding is encouragingly favorable for both inhibiting the formation of rutile phase TiO2 in ETL, and initiating the growth of high-quality perovskite films with less defect states. By virtue of these merits, creation of formamidinium lead iodide perovskite solar cells (PSCs) with a champion efficiency of 25.05% is achieved, setting a new benchmark for planar PSCs employing TiO2 ETLs. Unencapsulated PSCs deliver much-improved environmental stability, i.e., more than 80% of their initial efficiency after 9000 h of air storage under RH of 40%, and over 90% of their initial efficiency at maximum power point under continuous illumination for 500 h. Further work exploring other p-type nanocrystals for embedding warrants the proposed strategy as a universal alternative for addressing the low-carrier mobility of metal oxide based ETLs.

5.
Data Brief ; 46: 108892, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36710919

RESUMO

Three-phase equilibrium conditions of vapor-aqueous solution-gas hydrate coexistence for the systems of CH4-H2O-organic thermodynamic inhibitor (THI) were experimentally determined. Hydrate equilibrium measurements for systems with methanol (MeOH), monoethylene glycol (MEG), and diethylene glycol (DEG) were conducted. Five concentrations of each inhibitor (maximum content 50 mass%) were studied in the pressure range of 4.9-8.4 MPa. The equilibrium temperature and pressure in the point of complete dissociation of methane hydrate during constant-rate heating combined with vigorous mixing of fluids (600 rpm) in a high-pressure vessel were determined. We compared our experimental points with reliable literature data. The coefficients of empirical equations are derived, which accurately describe hydrate equilibrium conditions for the studied systems. The effect of THI concentration and pressure on methane hydrate equilibrium temperature suppression was analyzed. In the second stage, we studied the kinetics of methane hydrate nucleation/growth in systems containing a polymeric KHI (0.5 mass% of N-vinylpyrrolidone and N-vinylcaprolactam copolymer) in water or THI aqueous solution. For this, temperatures, pressures, and subcoolings of methane hydrate onset were measured by rocking cell tests (RCS6 rig, ramp cooling at 1 K/h). Gas uptake curves characterizing the methane hydrate crystallization kinetics in the polythermal regime were obtained.

6.
Polymers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38231929

RESUMO

Adsorption of organic phase-change materials (PCMs) by the porous matrix of microfibrillar cellulose (MFC) is a simple and versatile way to prepare shape-stable phase-change composites, which are promising as sustainable thermoregulating additives to construction materials. However, due to MFC inherent morphology, the resulting composites have relatively low poured density that complicates their introduction in sufficient amounts, for instance, into mortar mixes. Unlike MFC, fungal mycelium has, by an order, less fibrils thickness and, thus, possesses significantly higher poured density. Herein, we studied the feasibility of fungal mycelium-based matrices as alternative biopolymeric porous supports for preparation of sustainable and shape-stable phase-change composites. Two methods were employed to prepare the porous mycelium-based supports. The first one was the solid-state fermentation, which resulted in partial biotransformation of MFCs to mycelium hyphae, while the second one was the liquid-state surface fermentation, used to cultivate the reference matrix of Trametes hirsuta hyphae. The phase-change composites were prepared by adsorption of model organic PCMs on porous biopolymer matrices. The mass ratio of support/PCM was 40/60 wt%. The composites were studied with respect to their structure, composition, poured density, latent heat storage properties, and thermal and shape stability. The employment of the partially transformed to mycelium-hyphae MFC fibers was found to be a suitable way to prepare phase-change composites with improved poured density while preserving a reasonable latent heat capacity and shape stability as compared to the MFC/PCM composites.

7.
J Phys Chem Lett ; 13(43): 10114-10119, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269349

RESUMO

BiScO3 compound was obtained in the form of dense ceramic with a perovskite-type structure, and its complex characterization was determined for the first time. The corresponding synthesis procedure is described in detail. It is demonstrated that the temperature region of the phase stability at atmospheric pressure lies at T < 700 °C (973 K). It is shown that the crystal structure of the BiScO3 ceramic is centrosymmetric. Dielectric measurements of the synthesized sample performed at frequencies 25 Hz to 1 MHz and at temperatures 10-340 K show no changes typical for phase transition. Room-temperature infrared (30-15600 cm-1) and Raman (90-2000 cm-1) spectra of the prepared BiScO3 ceramic are measured, and information on the parameters of phonon resonances is obtained. The number of infrared modes exceeds that predicted by the factor group analysis of the noncentrosymmetric space group C2. The reason for selection rules violation can be associated with the disorder of the crystal structure and local distortions induced by the lone pair of electrons of Bi3+.

8.
Data Brief ; 42: 108289, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35637889

RESUMO

The temperatures and pressures of the three-phase equilibrium V-Lw-H (gas - aqueous solution - gas hydrate) were measured in the CO2 - H2O - dimethyl sulfoxide (DMSO) system at concentrations of organic solute in the aqueous phase up to 50 mass%. Measurements of CO2 hydrate equilibrium conditions were carried out using a constant volume autoclave by continuous heating at a rate of 0.1 K/h with simultaneous stirring of fluids by a four-blade agitator at 600 rpm. The equilibrium temperature and pressure of CO2 hydrate were determined for the endpoint of the hydrate dissociation in each experiment. The CO2 gas fugacity was calculated by the equation of state for carbon dioxide for the measured points. The flow regime in the autoclave during the operation of the stirring system was characterized by calculating the Reynolds number using literature data on the viscosity and density of water and DMSO aqueous solutions. We employed regression analysis to approximate the dependences of equilibrium pressure (CO2 gas fugacity) on temperature by two- and three-parameter equations. For each measured point, the value of CO2 hydrate equilibrium temperature suppression ΔTh was computed. The dependences of this quantity on CO2 gas fugacity are considered for all DMSO concentrations. The coefficients of empirical correlation describing ΔTh as a function of the DMSO mass fraction in solution and the equilibrium gas pressure are determined. This article is a co-submission with a paper [1].

9.
Adv Mater ; 34(19): e2201140, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35244311

RESUMO

The semiconductor-liquid junction (SCLJ), the dominant place in photoelectrochemical (PEC) catalysis, determines the interfacial activity and stability of photoelectrodes, whcih directly affects the viability of PEC hydrogen generation. Though efforts dedicated in past decades, a challenge remains regarding creating a synchronously active and stable SCLJ, owing to the technical hurdles of simultaneously overlaying the two advantages. The present work demonstrates that creating an SCLJ with a unique configuration of the dual interfacial layers can yield BiVO4 photoanodes with synchronously boosted photoelectrochemical activity and operational stability, with values located at the top in the records of such photoelectrodes. The bespoke dual interfacial layers, accessed via grafting laser-generated carbon dots with phenolic hydroxyl groups (LGCDs-PHGs), are experimentally verified effective, not only in generating the uniform layer of LGCDs with covalent anchoring for inhibited photocorrosion, but also in activating, respectively, the charge separation and transfer in each layer for boosted charge-carrier kinetics, resulting in FeNiOOH-LGCDs-PHGs-MBVO photoanodes with a dual configuration with the photocurrent density of 6.08 mA cm-2 @ 1.23 VRHE , and operational stability up to 120 h @ 1.23 VRHE . Further work exploring LGCDs-PHGs from catecholic molecules warrants the proposed strategy as being a universal alternative for addressing the interfacial charge-carrier kinetics and operational stability of semiconductor photoelectrodes.

10.
ACS Omega ; 7(8): 6728-6736, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252668

RESUMO

The problem of microbial growth on various surfaces has increased concern in society in the context of antibiotic misuse and the spreading of hospital infections. Thus, the development of new, antibiotic-free antibacterial strategies is required to combat bacteria resistant to usual antibiotic treatments. This work reports a new method for producing an antibiotic-free antibacterial halloysite-based nanocomposite with silver nanoparticles and phosphomolybdic acid as biocides, which can be used as components of smart antimicrobial coatings. The composite was characterized by using energy-dispersive X-ray fluorescence spectroscopy and transmission electron microscopy. The release of phosphomolybdic acid from the nanocomposite was studied by using UV-vis spectroscopy. It was shown that the antibiotic-free nanocomposite consisting of halloysite nanotubes decorated with silver nanoparticles loaded with phosphomolybdic acid and treated with calcium chloride possesses broad antibacterial properties, including the complete growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa bacteria at a 0.5 g × L-1 concentration and Acinetobacter baumannii at a 0.25 g × L-1 concentration.

11.
Data Brief ; 39: 107532, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34805462

RESUMO

Two-phase samples containing water, 2-butoxyethanol, and toluene in the different mass ratios were gravimetrically prepared in the jacketed cells at T=293.15 K and p=0.100 MPa and equilibrated for 24 h. The samples were volumetrically titrated until homogeneous. Then new samples were prepared in the two-phase region with compositions in the immediate proximity to the expected separation boundary and titrated until homogeneous. The critical point was located, keeping the phase ratio of 1:1 during the titration. The density of homogeneous samples obtained during titration was measured using the density meter. These data were used to construct an interpolation of the density along the separation boundary. New two-phase samples were prepared; the interfacial tension, density, and viscosity were measured. Thus, interfacial tension isotherm and viscosity isotherm were obtained using density interpolation to determine the composition of the equilibrated phases. The obtained data can be used to prepare the two-phase samples with desired properties, design the oil-water separation processes, and develop new oil spill dispersants containing 2-butoxyethanol. This article is a co-submission with a paper [1].

12.
Polymers (Basel) ; 13(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34771304

RESUMO

Due to the fact that the application of AW and EP additives in low-temperature greases may lead to worse high-temperature and anti-corrosion characteristics as well as additional burden on the environment due to the content of aggressive components, in this paper, the possibility of replacing these additives with NFA, which do not have these disadvantages, was investigated. The analysis of nanosized particles being used as functional additives in greases was carried out. The morphology of the following nanoparticles was studied: montmorillonite K 10, silica, calcium car-bonate and borate, halloysite, and molybdenum disulfide incorporated in halloysite tubes. The effect of nanostructured components on the physicochemical characteristics and anti-wear and anti-scuffing properties of complex lithium, polyurea, and polymer greases were studied. Maximal improvement of anti-wear and anti-scuffing characteristics of cLi-greases was reached when using silica and calcium borate. Maximal improvement of anti-scuffing properties of PU-lubricant was reached when using calcium carbonate and the two-component NFA based on halloysite, for anti-wear properties when adding silicon dioxide and halloysite. When the concentrations of silicon dioxide and calcium carbonate was increased from 1 to 3 wt.%, there was a decrease in yield stress of the structural frame of the PU-lubricant and its colloidal stability was worse. The increase of the concentration of calcium carbonate and borate nanoparticles in the studied range led to a significant improvement of the anti-wear and anti-scuffing characteristics of the PU grease, respectively. The greases properties' dependence from the nanostructured functional additives' introduction method and their concentration were investigated. Nanoparticles were added into the test lubricants before and after the thermo-mechanical dispersion stage. The addition of silicon dioxide and calcium carbonate NFA after the heat treatment stage led to worsening of the characteristics of the plastic material, and the increase of their concentration from 1 to 3 wt.% formed a harder structure of Li-grease. On the contrary, the addition of calcium borate NFA is recommended after the thermomechanical dispersion. The choice of nanoparticles and the method of their addition to the lubricants of various types was carried out according to the results of the previous stage of the research. Along with the analysis of the physicochemical characteristics and anti-wear and anti-scuffing properties of the lubricants, the structure of the dispersion phase of nanomodified lubricants were studied.

13.
Adv Mater ; 33(36): e2101590, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302406

RESUMO

Tackling the interfacial loss in emerged perovskite-based solar cells (PSCs) to address synchronously the carrier dynamics and the environmental stability, has been of fundamental and viable importance, while technological hurdles remain in not only creating such interfacial mediator, but the subsequent interfacial embedding in the active layer. This article reports a strategy of interfacial embedding of hydrophobic fluorinated-gold-clusters (FGCs) for highly efficient and stable PSCs. The p-type semiconducting feature enables the FGC efficient interfacial mediator to improve the carrier dynamics by reducing the interfacial carrier transfer barrier and boosting the charge extraction at grain boundaries. The hydrophobic tails of the gold clusters and the hydrogen bonding between fluorine groups and perovskite favor the enhancement of environmental stability. Benefiting from these merits, highly efficient formamidinium lead iodide PSCs (champion efficiency up to 24.02%) with enhanced phase stability under varied relative humidity (RH) from 40% to 95%, as well as highly efficient mixed-cation PSCs with moisture stability (RH of 75%) over 10 000 h are achieved. It is thus inspiring to advance the development of highly efficient and stable PSCs via interfacial embedding laser-generated additives for improved charge transfer/extraction and environmental stability.

14.
Biochem Biophys Res Commun ; 546: 145-149, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33582557

RESUMO

In times of widespread multiple antibiotic resistance, the bacterial colonization of crucial medical surfaces should be detected as fast as possible. In this work, we present the non-destructive SERS method for the detection of bacterial colonization. SERS is an excellent tool for the monitoring of suitable substances in low concentrations. The SERS substrate was prepared by the aggregation of citrate-stabilized gold nanoparticles and the adsorption of the reporters (crystal violet, thiamine, and adenine). We have tested the substrate for the detection of clinically relevant S. aureus and P. aeruginosa bacteria. The SERS spectra before and after the substrate incubation revealed the degradation of the reporter by the growing bacteria. The growth of P. aeruginosa was detected using the substrates with preadsorbed crystal violet or adenine. The suitable reporter for the detection of S. aureus remains to be discovered. The selection of the reporters resistant to exposure but easily degraded by bacteria will open the way for the in situ monitoring of bacterial colonization, thus complementing the arsenal of methods in the battle against hospital infections.


Assuntos
Adenina/química , Violeta Genciana/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação , Análise Espectral Raman/métodos , Ácido Cítrico/química , Ouro/química , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Sondas Moleculares/análise , Sondas Moleculares/química , Staphylococcus aureus , Tiamina/química
15.
Chemistry ; 26(57): 13085-13092, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640117

RESUMO

A nanoarchitectural approach based on in situ formation of quantum dots (QDs) within/outside clay nanotubes was developed. Efficient and stable photocatalysts active under visible light were achieved with ruthenium-doped cadmium sulfide QDs templated on the surface of azine-modified halloysite nanotubes. The catalytic activity was tested in the hydrogen evolution reaction in aqueous electrolyte solutions under visible light. Ru doping enhanced the photocatalytic activity of CdS QDs thanks to better light absorption and electron-hole pair separation due to formation of a metal/semiconductor heterojunction. The S/Cd ratio was the major factor for the formation of stable nanoparticles on the surface of the azine-modified clay. A quantum yield of 9.3 % was reached by using Ru/CdS/halloysite containing 5.2 wt % of Cd doped with 0.1 wt % of Ru and an S/Cd ratio of unity. In vivo and in vitro studies on the CdS/halloysite hybrid demonstrated the absence of toxic effects in eukaryotic cells and nematodes in short-term tests, and thus they are promising photosensitive materials for multiple applications.

16.
Langmuir ; 35(41): 13480-13487, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31545051

RESUMO

Nonionic hydrotropes (low-molecular-weight amphiphiles) demonstrate striking dual actions in bulk solutions and interfaces, exhibiting both surfactant-like and co-solvent properties. We report on peculiar, strongly affected by this duality, liquid-liquid and air-liquid-liquid interfacial behavior in aqueous ternary systems, containing hydrotropes and hydrocarbons, in a broad range of compositions and at various temperatures. Phase diagrams of the studied systems, containing tertiary butanol (TBA), as a hydrotrope, are of Type 1: the hydrotrope, at the experimental conditions, is completely miscible with water and with all investigated hydrocarbons [cyclohexane (CHX), toluene (TOL), and n-decane (DEC)], whereas the ternary mixtures exhibit liquid-liquid phase separation terminated at corresponding critical points. The shape and location of the phase separation boundary are only weakly dependent on temperature and the hydrocarbon's nature; however, the critical point in the water-TBA-DEC system is significantly shifted toward a higher TBA concentration. For the experimentally studied systems and for available data reported in the literature, we confirmed an apparently generic (for nonionic hydrotropes) phenomenon of a dual action at water-oil interfaces (earlier found in water-TBA-CHX [J. Phys. Chem. C 2017, 121, 16423]): at low concentrations, hydrotropes saturate the water-oil interface like a surfactant, whereas at higher concentrations they act as co-solvents, resulting in vanishing interfacial tension at the liquid-liquid critical point. We suggest a universal crossover function that accurately interpolates the two theoretically based limits of interfacial behavior. This crossover function also accounts for earlier deviations from Langmuir-von Szyszkowski limiting behavior in the water-TBA-DEC system, caused by lower solubility (relative to other studied hydrocarbons) of DEC in water. An intriguing correlation between the dual action of hydrotropes at the water-oil interface and the behavior of the liquid-air interfaces is also discussed.

17.
Phys Chem Chem Phys ; 21(1): 148-159, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30515495

RESUMO

Catalytic conversion of syngas to valuable chemicals and fuels such as ethanol is an extremely desirable process route. In the present study, the elementary steps leading to the formation of ethanol via syngas conversion over the Cu/γ-AlOOH(001) surface have been explored using density functional theory (DFT) calculations. The reaction pathway CO + H → CHO, CHO + CHO → OHCCHO → CHCHO + O, CHCHO + 4H → CH2CHO + 3H → CH3CHO + 2H → CH3CH2O + H → C2H5OH is the most favorable; during the whole process, CH3CHO formation needs to overcome the highest activation barrier. Different from the γ-AlOOH(001) surface, carbon chain growth is realized via the formyl coupling mechanism on the Cu/γ-AlOOH(001) surface; this step needs to overcome a 1.07 eV activation barrier and is exothermic by 0.73 eV. Our Bader charge analyses revealed that the addition of the Cu component enhances the electrostatic interaction between the CHO intermediate and the γ-AlOOH(001) surface with the aid of the formed CuOx species; as a result, the initial C-C chain forms in a different way. Moreover, the rate constant results manifest that the formation of the OHCCHO key intermediate can be facilitated by increasing the reaction temperature. We expect the obtained results will be useful for future experimental studies to improve the selectivity of C2 oxygenates in syngas conversion.

18.
Nanomaterials (Basel) ; 8(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857546

RESUMO

Quantum dots (QD) are widely used for cellular labeling due to enhanced brightness, resistance to photobleaching, and multicolor light emissions. CdS and CdxZn1-xS nanoparticles with sizes of 6⁻8 nm were synthesized via a ligand assisted technique inside and outside of 50 nm diameter halloysite clay nanotubes (QD were immobilized on the tube's surface). The halloysite⁻QD composites were tested by labeling human skin fibroblasts and prostate cancer cells. In human cell cultures, halloysite⁻QD systems were internalized by living cells, and demonstrated intense and stable fluorescence combined with pronounced nanotube light scattering. The best signal stability was observed for QD that were synthesized externally on the amino-grafted halloysite. The best cell viability was observed for CdxZn1-xS QD immobilized onto the azine-grafted halloysite. The possibility to use QD clay nanotube core-shell nanoarchitectures for the intracellular labeling was demonstrated. A pronounced scattering and fluorescence by halloysite⁻QD systems allows for their promising usage as markers for biomedical applications.

19.
Chemphyschem ; 19(12): 1522-1530, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29544031

RESUMO

Thermodynamic calculations of the optimal compositions of oxide catalysts with different natures are performed based on the theory of catalysis by polyhedra. The obtained compositions of the active catalysts agree with experimental data. The electrostatic potential generated by polyhedra of metal-oxide catalysts in a variety of directions is calculated. The dependence of the sign and magnitude of the potential on the distance from the central metal ion towards the vertex of the polyhedron, the middle of its edge or the centre of the face is estimated. It is assumed that the magnitude of the potential can serve as a reference point for determining active centres, which produce adsorption complexes and intermediate compounds.

20.
Chem Rec ; 18(7-8): 858-867, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29314509

RESUMO

Nanoparticles, being objects with high surface area are prone to agglomeration. Immobilization onto solid supports is a promising method to increase their stability and it allows for scalable industrial applications, such as metal nanoparticles adsorbed to mesoporous ceramic carriers. Tubular nanoclay - halloysite - can be an efficient solid support, enabling the fast and practical architectural (inside / outside) synthesis of stable metal nanoparticles. The obtained halloysite-nanoparticle composites can be employed as advanced catalysts, ion-conducting membrane modifiers, inorganic pigments, and optical markers for biomedical studies. Here, we discuss the possibilities to synthesize halloysite decorated with metal, metal chalcogenide, and carbon nanoparticles, and to use these materials in various fields, especially in catalysis and petroleum refinery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...