Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 5(4): 100651, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36866391

RESUMO

Background & Aims: Oxidative stress is recognized as a major driver of non-alcoholic steatohepatitis (NASH) progression. The transcription factor NRF2 and its negative regulator KEAP1 are master regulators of redox, metabolic and protein homeostasis, as well as detoxification, and thus appear to be attractive targets for the treatment of NASH. Methods: Molecular modeling and X-ray crystallography were used to design S217879 - a small molecule that could disrupt the KEAP1-NRF2 interaction. S217879 was highly characterized using various molecular and cellular assays. It was then evaluated in two different NASH-relevant preclinical models, namely the methionine and choline-deficient diet (MCDD) and diet-induced obesity NASH (DIO NASH) models. Results: Molecular and cell-based assays confirmed that S217879 is a highly potent and selective NRF2 activator with marked anti-inflammatory properties, as shown in primary human peripheral blood mononuclear cells. In MCDD mice, S217879 treatment for 2 weeks led to a dose-dependent reduction in NAFLD activity score while significantly increasing liver Nqo1 mRNA levels, a specific NRF2 target engagement biomarker. In DIO NASH mice, S217879 treatment resulted in a significant improvement of established liver injury, with a clear reduction in both NAS and liver fibrosis. αSMA and Col1A1 staining, as well as quantification of liver hydroxyproline levels, confirmed the reduction in liver fibrosis in response to S217879. RNA-sequencing analyses revealed major alterations in the liver transcriptome in response to S217879, with activation of NRF2-dependent gene transcription and marked inhibition of key signaling pathways that drive disease progression. Conclusions: These results highlight the potential of selective disruption of the NRF2-KEAP1 interaction for the treatment of NASH and liver fibrosis. Impact and implications: We report the discovery of S217879 - a potent and selective NRF2 activator with good pharmacokinetic properties. By disrupting the KEAP1-NRF2 interaction, S217879 triggers the upregulation of the antioxidant response and the coordinated regulation of a wide spectrum of genes involved in NASH disease progression, leading ultimately to the reduction of both NASH and liver fibrosis progression in mice.

2.
Br J Pharmacol ; 169(5): 999-1010, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23488540

RESUMO

BACKGROUND AND PURPOSE: Small molecule glucokinase activators (GKAs) have been associated with potent antidiabetic efficacy and hepatic steatosis in rodents. This study reports the discovery of S 50131 and S 51434, two novel GKAs with an original scaffold and an atypical pharmacological profile. EXPERIMENTAL APPROACH: Activity of the compounds was assessed in vitro by measuring activation of recombinant glucokinase, stimulation of glycogen synthesis in rat hepatocytes and increased insulin secretion from rat pancreatic islets of Langerhans. Efficacy and safety in vivo were evaluated after oral administration in db/db mice by measuring glycaemia, HbA1c and dyslipidaemia-associated events. KEY RESULTS: S 50131 and S 51434 activated GK and stimulated glycogen synthesis in hepatocytes and insulin secretion from pancreatic islets. Unexpectedly, while both compounds effectively lowered glycaemia after acute oral administration, they did not decrease HbA1c after a 4-week treatment in db/db mice. This lack of antidiabetic efficacy was associated with increased plasma free fatty acids (FFAs), contrasting with the effect of GKA50 and N00236460, two GKAs with sustained HbA1c lowering activity but neutral regarding plasma FFAs. S 50131, but not S 51434, also induced hepatic steatosis, as did GKA50 and N00236460. However, a shorter, 4-day treatment resulted in increased hepatic triglycerides without changing the plasma FFA levels, demonstrating dynamic alterations in the lipid profile over time. CONCLUSIONS AND IMPLICATIONS: In addition to confirming the occurrence of dyslipidaemia with GKAs, these findings provide new insights into understanding how such compounds may sustain or lose efficacy over time.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Ativadores de Enzimas/uso terapêutico , Glucoquinase/metabolismo , Hipoglicemiantes/uso terapêutico , Ácidos Nicotínicos/uso terapêutico , Compostos Policíclicos/uso terapêutico , Animais , Glicemia/análise , Células CACO-2 , Células Cultivadas , Colesterol/sangue , Diabetes Mellitus/sangue , Diabetes Mellitus/metabolismo , Ativadores de Enzimas/farmacologia , Ácidos Graxos não Esterificados/sangue , Hemoglobinas Glicadas/metabolismo , Glicogênio/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Absorção Intestinal , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Ácidos Nicotínicos/farmacologia , Compostos Policíclicos/farmacologia , Ratos Sprague-Dawley , Ratos Wistar , Resultado do Tratamento , Triglicerídeos/metabolismo
3.
Br J Pharmacol ; 168(2): 339-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22925001

RESUMO

BACKGROUND AND PURPOSE: Small-molecule glucokinase activators (GKAs) are currently being investigated as therapeutic options for the treatment of type 2 diabetes (T2D). Because liver overexpression of glucokinase is thought to be associated with altered lipid profiles, this study aimed at assessing the potential lipogenic risks linked to oral GKA administration. EXPERIMENTAL APPROACH: Nine GKA candidates were qualified for their ability to activate recombinant glucokinase and to stimulate glycogen synthesis in rat hepatocytes and insulin secretion in rat INS-1E cells. In vivo activity was monitored by plasma glucose and HbA1c measurements after oral administration in rodents. Risk-associated effects were assessed by measuring hepatic and plasma triglycerides and free fatty acids, as well as plasma aminotransferases, and alkaline phosphatase. KEY RESULTS: GKAs, while efficiently decreasing glycaemia in acute conditions and HbA1c levels after chronic administration in hyperglycemic db/db mice, were potent inducers of hepatic steatosis. This adverse outcome appeared as soon as 4 days after daily oral administration at pharmacological doses and was not transient. GKA treatment similarly increased hepatic triglycerides in diabetic and normoglycaemic rats, together with a pattern of metabolic phenotypes including different combinations of increased plasma triglycerides, free fatty acids, alanine and aspartyl aminotransferases, and alkaline phosphatase. GKAs belonging to three distinct structural families induced hepatic steatosis in db/db mice, arguing in favour of a target-mediated, rather than a chemical class-mediated, effect. CONCLUSION AND IMPLICATIONS: Given the risks associated with fatty liver disease in the general population and furthermore in patients with T2D, these findings represent a serious warning for the use of GKAs in humans. LINKED ARTICLE: This article is commented on by Rees and Gloyn, pp. 335-338 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02201.x.


Assuntos
Ativadores de Enzimas/farmacologia , Fígado Gorduroso/induzido quimicamente , Glucoquinase/metabolismo , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Glicemia/análise , Células CACO-2 , Linhagem Celular Tumoral , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ativadores de Enzimas/uso terapêutico , Fígado Gorduroso/metabolismo , Hemoglobinas Glicadas/análise , Hepatócitos/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Hipoglicemiantes/uso terapêutico , Absorção Intestinal , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Ratos Zucker
4.
Clin Pharmacokinet ; 49(4): 239-58, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20214408

RESUMO

Nowadays, evaluation of potential risk of metabolic drug-drug interactions (mDDIs) is of high importance within the pharmaceutical industry, in order to improve safety and reduce the attrition rate of new drugs. Accurate and early prediction of mDDIs has become essential for drug research and development, and in vitro experiments designed to evaluate potential mDDIs are systematically included in the drug development plan prior to clinical assessment. The aim of this study was to illustrate the value and limitations of the classical and new approaches available to predict risks of DDIs in the research and development processes. The interaction of cytochrome P450 (CYP) 3A4 inhibitors (ketoconazole and verapamil) with midazolam was predicted using the inhibitor concentration/inhibition constant ([I]/K(i)) approach, the static approach with added variability (Simcyp(R)), and whole-body physiologically based pharmacokinetic (WB-PBPK) modelling (acslXtreme(R)). Then an in-house reference drug was used to challenge the different approaches based on the midazolam experience. Predicted values (pharmacokinetic parameters, the area under the plasma concentration-time curve [AUC] ratio and plasma concentrations) were compared with observed values obtained after intravenous and oral administration in order to assess the accuracy of the prediction methods. With the [I]/K(i) approach, the interaction risk was always overpredicted for the midazolam substrate, regardless of its route of administration and the coadministered inhibitor. However, the predictions were always satisfactory (within 2-fold) for the reference drug. For the Simcyp(R) calculations, two of the three interaction results for midazolam were overpredicted, both when midazolam was given orally, whereas the prediction obtained when midazolam was administered intravenously was satisfactory. For the reference drug, all predictions could be considered satisfactory. For the WB-PBPK approach, all predictions were satisfactory, regardless of the substrate, route of administration, dose and coadministered inhibitor. DDI risk predictions are performed throughout the research and development processes and are now fully integrated into decision-making processes. The regulatory approach is useful to provide alerts, even at a very early stage of drug development. The 'steady state' approach in Simcyp(R) improves the prediction by using physiological knowledge and mechanistic assumptions. The DDI predictions are very useful, as they provide a range of AUC ratios that include individuals at the extremes of the population, in addition to the 'average tendency'. Finally, the WB-PBPK approach improves the predictions by simulating the concentration-time profiles and calculating the related pharmacokinetic parameters, taking into account the time of administration of each drug - but it requires a good understanding of the absorption, distribution, metabolism and excretion properties of the compound.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Cetoconazol/farmacocinética , Modelos Biológicos , Verapamil/farmacocinética , Algoritmos , Área Sob a Curva , Citocromo P-450 CYP3A , Interações Medicamentosas , Humanos , Taxa de Depuração Metabólica , Midazolam/farmacocinética , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...