Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 811146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309894

RESUMO

Introduction: Hippocampal atrophy is an established Alzheimer's Disease (AD) biomarker. Volume loss in specific subregions as measurable with ultra-high field magnetic resonance imaging (MRI) may reflect earliest pathological alterations. Methods: Data from positron emission tomography (PET) for estimation of cortical amyloid ß (Aß) and high-resolution 7 Tesla T1 MRI for assessment of hippocampal subfield volumes were analyzed in 61 non-demented elderly individuals who were divided into risk-categories as defined by high levels of cortical Aß and low performance in standardized episodic memory tasks. Results: High cortical Aß and low episodic memory interactively predicted subicular volume [F(3,57) = 5.90, p = 0.018]. The combination of high cortical Aß and low episodic memory was associated with significantly lower subicular volumes, when compared to participants with high episodic memory (p = 0.004). Discussion: Our results suggest that low subicular volume is linked to established indicators of AD risk, such as increased cortical Aß and low episodic memory. Our data support subicular volume as a marker of dementia-risk susceptibility in old-aged non-demented persons.

2.
Magn Reson Med ; 87(1): 272-280, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34398985

RESUMO

PURPOSE: The aim of this work is the reconciliation of high spatial and temporal resolution for MRI. For this purpose, a novel sampling strategy for 3D encoding is proposed, which provides flexible k-space segmentation along with uniform sampling density and benign filtering effects related to signal decay. METHODS: For time-critical MRI applications such as functional MRI (fMRI), 3D k-space is usually sampled by stacking together 2D trajectories such as echo planar imaging (EPI) or spiral readouts, where each shot covers one k-space plane. For very high temporal and medium to low spatial resolution, tilted hexagonal sampling (T-Hex) was recently proposed, which allows the acquisition of a larger k-space volume per excitation than can be covered with a planar readout. Here, T-Hex is described in a modified version where it instead acquires a smaller k-space volume per shot for use with medium temporal and high spatial resolution. RESULTS: Mono-planar T-Hex sampling provides flexibility in the choice of speed, signal-to-noise ratio (SNR), and contrast for rapid MRI acquisitions. For use with a conventional gradient system, it offers the greatest benefit in a regime of high in-plane resolution <1 mm. The sampling scheme is combined with spirals for high sampling speed as well as with more conventional EPI trajectories. CONCLUSION: Mono-planar T-Hex sampling combines fast 3D encoding with SNR efficiency and favorable depiction characteristics regarding noise amplification and filtering effects from T2∗ decay, thereby providing flexibility in the choice of imaging parameters. It is attractive both for high-resolution time series such as fMRI and for applications that require rapid anatomical imaging.


Assuntos
Encéfalo , Imageamento Tridimensional , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Imageamento por Ressonância Magnética , Razão Sinal-Ruído
3.
Neuroimage ; 226: 117286, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32992003

RESUMO

T2*-weighted gradient-echo sequences count among the most widely used techniques in neuroimaging and offer rich magnitude and phase contrast. The susceptibility effects underlying this contrast scale with B0, making T2*-weighted imaging particularly interesting at high field. High field also benefits baseline sensitivity and thus facilitates high-resolution studies. However, enhanced susceptibility effects and high target resolution come with inherent challenges. Relying on long echo times, T2*-weighted imaging not only benefits from enhanced local susceptibility effects but also suffers from increased field fluctuations due to moving body parts and breathing. High resolution, in turn, renders neuroimaging particularly vulnerable to motion of the head. This work reports the implementation and characterization of a system that aims to jointly address these issues. It is based on the simultaneous operation of two control loops, one for field stabilization and one for motion correction. The key challenge with this approach is that the two loops both operate on the magnetic field in the imaging volume and are thus prone to mutual interference and potential instability. This issue is addressed at the levels of sensing, timing, and control parameters. Performance assessment shows the resulting system to be stable and exhibit adequate loop decoupling, precision, and bandwidth. Simultaneous field and motion control is then demonstrated in examples of T2*-weighted in vivo imaging at 7T.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Retroalimentação , Humanos , Movimento (Física)
4.
Magn Reson Med ; 85(5): 2507-2523, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33270941

RESUMO

PURPOSE: The purpose of this work is to devise and demonstrate an encoding strategy for 3D MRI that reconciles high speed with flexible segmentation, uniform k-space density, and benign T2∗ effects. METHODS: Fast sampling of a 3D k-space is typically accomplished by 2D readouts per shot using EPI trains or spiral readouts. Tilted hexagonal (T-Hex) sampling is a way of acquiring more k-space volume per excitation while maintaining uniform sampling density and a smooth T2∗ filter. The k-space volume covered per shot is controlled by the tilting angle. Image reconstruction is performed with a 3D extension of the iterative SENSE approach, incorporating actual field dynamics and static off-resonance. T-Hex imaging is compared with established 3D schemes in terms of speed and noise performance. RESULTS: Tilted hexagonal acquisition is found to achieve greater imaging speed than known alternatives, particularly in combination with spiral trajectories. The interplay of the proposed 3D trajectories, array detection, and off-resonance is successfully addressed by iterative inversion of the full signal model. Enhanced coverage per shot is of greatest utility for high speed in an intermediate resolution regime of 1 to 4 mm. T-Hex EPI combines the benefits of extended coverage per shot with increased robustness against off-resonance effects. CONCLUSION: Sampling of tilted hexagonal grids is a feasible means of gaining 3D imaging speed with near-optimal SNR efficiency and benign depiction properties. It is a particularly promising technique for time-resolved applications such as fMRI.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Algoritmos , Encéfalo/diagnóstico por imagem , Sistemas Computacionais , Imageamento por Ressonância Magnética
5.
IEEE Trans Med Imaging ; 39(4): 1138-1148, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31567076

RESUMO

Developments in magnetic resonance imaging (MRI) in the last decades show a trend towards a growing number of array coils and an increasing use of a wide variety of sensors. Associated cabling and safety issues have been addressed by moving data acquisition closer to the coil. However, with the increasing number of radio-frequency (RF) channels and trend towards higher acquisition duty-cycles, the data amount is growing, which poses challenges for throughput and data handling. As it is becoming a limitation, early compression and preprocessing is becoming ever more important. Additionally, sensors deliver diverse data, which require distinct and often low-latency processing for run-time updates of scanner operation. To address these challenges, we propose the transition to reconfigurable hardware with an application tailored assembly of interfaces and real-time processing resources. We present an integrated solution based on a system-on-chip (SoC), which offers sufficient throughput and hardware-based parallel processing power for very challenging applications. It is equipped with fiber-optical modules serving as versatile interfaces for modular systems with in-field operation. We demonstrate the utility of the platform on the example of concurrent imaging and field sensing with hardware-based coil compression and trajectory extraction. The preprocessed data are then used in expanded encoding model based image reconstruction of single-shot and segmented spirals as used in time-series and anatomical imaging respectively.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Humanos , Razão Sinal-Ruído
6.
Magn Reson Med ; 80(5): 1836-1846, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29575161

RESUMO

PURPOSE: The purpose of this work is to explore the feasibility and performance of single-shot spiral MRI at 7 T, using an expanded signal model for reconstruction. METHODS: Gradient-echo brain imaging is performed on a 7 T system using high-resolution single-shot spiral readouts and half-shot spirals that perform dual-image acquisition after a single excitation. Image reconstruction is based on an expanded signal model including the encoding effects of coil sensitivity, static off-resonance, and magnetic field dynamics. The latter are recorded concurrently with image acquisition, using NMR field probes. The resulting image resolution is assessed by point spread function analysis. RESULTS: Single-shot spiral imaging is achieved at a nominal resolution of 0.8 mm, using spiral-out readouts of 53-ms duration. High depiction fidelity is achieved without conspicuous blurring or distortion. Effective resolutions are assessed as 0.8, 0.94, and 0.98 mm in CSF, gray matter and white matter, respectively. High image quality is also achieved with half-shot acquisition yielding image pairs at 1.5-mm resolution. CONCLUSION: Use of an expanded signal model enables single-shot spiral imaging at 7 T with unprecedented image quality. Single-shot and half-shot spiral readouts deploy the sensitivity benefit of high field for rapid high-resolution imaging, particularly for functional MRI and arterial spin labeling.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos
7.
Magn Reson Med ; 79(6): 3256-3266, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28983969

RESUMO

PURPOSE: The goal of this study was to devise a gradient system for MRI in humans that reconciles cutting-edge gradient strength with rapid switching and brings up the duty cycle to 100% at full continuous amplitude. Aiming to advance neuroimaging and short-T2 techniques, the hardware design focused on the head and the extremities as target anatomies. METHODS: A boundary element method with minimization of power dissipation and stored magnetic energy was used to design anatomy-targeted gradient coils with maximally relaxed geometry constraints. The design relies on hollow conductors for high-performance cooling and split coils to enable dual-mode gradient amplifier operation. With this approach, strength and slew rate specifications of either 100 mT/m with 1200 mT/m/ms or 200 mT/m with 600 mT/m/ms were reached at 100% duty cycle, assuming a standard gradient amplifier and cooling unit. RESULTS: After manufacturing, the specified values for maximum gradient strength, maximum switching rate, and field geometry were verified experimentally. In temperature measurements, maximum local values of 63°C were observed, confirming that the device can be operated continuously at full amplitude. Testing for peripheral nerve stimulation showed nearly unrestricted applicability in humans at full gradient performance. In measurements of acoustic noise, a maximum average sound pressure level of 132 dB(A) was determined. In vivo capability was demonstrated by head and knee imaging. Full gradient performance was employed with echo planar and zero echo time readouts. CONCLUSION: Combining extreme gradient strength and switching speed without duty cycle limitations, the described system offers unprecedented options for rapid and short-T2 imaging. Magn Reson Med 79:3256-3266, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Humanos , Joelho/diagnóstico por imagem , Masculino , Dinâmica não Linear , Imagens de Fantasmas , Temperatura
8.
Neuroimage ; 154: 106-114, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28088483

RESUMO

Physiological noise originating in cardiovascular and respiratory processes is a substantial confound in BOLD fMRI. When unaccounted for it reduces the temporal SNR and causes error in inferred brain activity and connectivity. Physiology correction typically relies on auxiliary measurements with peripheral devices such as ECG, pulse oximeters, and breathing belts. These require direct skin contact or at least a tight fit, impairing subject comfort and adding to the setup time. In this work, we explore a touch-free alternative for physiology recording, using magnetic detection with NMR field probes. Placed close to the chest such probes offer high sensitivity to cardiovascular and respiratory dynamics without mechanical contact. This is demonstrated by physiology regression in a typical fMRI scenario at 7T, including validation against standard devices. The study confirms essentially equivalent performance of noise models based on conventional recordings and on field probes. It is shown that the field probes may be positioned in the subject's back such that they could be readily integrated in the patient table.


Assuntos
Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Monitorização Fisiológica/instrumentação , Processamento de Sinais Assistido por Computador , Adulto , Humanos
9.
Magn Reson Med ; 78(4): 1607-1622, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27797105

RESUMO

PURPOSE: The goal of this contribution is to enhance the fidelity and switching speed of gradient and shim fields by advancing pre-emphasis toward broadband and full cross-term correction. THEORY AND METHODS: The proposed approach is based on viewing gradient and shim chains as linear, time-invariant (LTI) systems. Pre-emphasis is accomplished by inversion of a broadband digital system model. In the multiple-channel case, it amounts to a matrix of broadband filters that perform concerted self- and cross-term correction. This approach is demonstrated with gradients and shims up to the third order in a 7 Tesla whole-body MR system. RESULTS: Pre-emphasis by LTI model inversion is first verified by studying settling speeds and response behavior without and with the correction. It is then demonstrated for rapid shim updating, achieving substantially enhanced fidelity of field dynamics and shim settling within approximately 1 ms. In single-shot echo-planar imaging (EPI) acquisitions in vivo, this benefit is shown to translate into enhanced geometric fidelity. CONCLUSIONS: The fidelity of gradient and shim dynamics can be greatly enhanced by pre-emphasis based on inverting a general LTI system model. Permitting shim settling on the millisecond scale, broadband multiple-channel pre-emphasis promises to render higher-order shimming fully versatile at the level of MRI sequence design. Magn Reson Med 78:1607-1622, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Humanos , Modelos Lineares , Modelos Biológicos , Imagens de Fantasmas
10.
IEEE Trans Med Imaging ; 33(2): 535-45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24216682

RESUMO

Optoacoustic (photoacoustic) imaging uniquely visualizes optical contrast in high resolution and comes with very attractive characteristics for clinical imaging applications. In this paper, we showcase the performance of a scanner based on a 24 MHz center-frequency 128 element array, developed for applications in dermatology. We perform system characterization to examine the imaging performance achieved. We then showcase its imaging ability on healthy tissue and cancer. Finally, we image burns and human lesions in vivo and gain insights on the benefits and challenges of this approach as it is considered for diagnostic and treatment follow-up applications in dermatology and beyond.


Assuntos
Queimaduras/patologia , Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas/métodos , Pele/patologia , Animais , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/patologia , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...