Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256751

RESUMO

Epilobium hirsutum L., commonly known as hairy willowherb, is a perennial herbaceous plant native to Europe and Asia. In Romania, the Epilobium genus includes 17 species that are used in folk medicine for various purposes. This study aimed to investigate the anti-inflammatory and antitumor potential of the optimized extract of Epilobium hirsutum (EH) in animal models. The first study investigated the anti-inflammatory properties of EH optimized extract and the model used was carrageenan-induced paw inflammation. Wistar rats were divided into three groups: negative control, positive control treated with indomethacin, and a group treated with the extract. Oxidative stress markers, cytokine levels, and protein expressions were assessed. The extract demonstrated anti-inflammatory properties comparable to those of the control group. In the second study, the antitumor effects of the extract were assessed using the tumor model of Ehrlich ascites carcinoma. Swiss albino mice with Ehrlich ascites were divided into four groups: negative, positive treated with cyclophosphamide (Cph), Group 3 treated with Cph and EH optimized extract, and Group 4 treated with extract alone. Samples from the ascites fluid, liver, and heart were analyzed to evaluate oxidative stress, inflammation, and cancer markers. The extract showed a reduction in tumor-associated inflammation and oxidative stress. Overall, the EH optimized extract exhibited promising anti-inflammatory and antitumor effects in the animal models studied. These findings suggest its potential as a natural adjuvant therapeutic agent for addressing inflammation and oxidative stress induced by different pathologies.

2.
Plants (Basel) ; 12(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37176897

RESUMO

One of the objectives of this study consists of the assessment of the antitumor activity of several extracts from three selected plant species: Xanthium spinosum L., Trifolium pratense L., and Coffea arabica L. and also a comparative study of this biological activity, with the aim of establishing a superior herbal extract for antitumor benefits. The phytochemical profile of the extracts was established by HPLC-MS analysis. Further, the selected extracts were screened in vitro for their antitumor activity and antioxidant potential on two cancer cell lines: A549-human lung adenocarcinoma and T47D-KBluc-human breast carcinoma and on normal cells. One extract per plant was selected for in vivo assessment of antitumor activity in an Ehrlich ascites mouse model. The extracts presented high content of antitumor compounds such as caffeoylquinic acids in the case of X. spinosum L. (7.22 µg/mL-xanthatin, 4.611 µg/mL-4-O-caffeoylquinic acid) and green coffee beans (10.008 µg/mL-cafestol, 265.507 µg/mL-4-O-caffeoylquinic acid), as well as isoflavones in the case of T. pratense L. (6806.60 ng/mL-ononin, 102.78 µg/mL-biochanin A). Concerning the in vitro results, the X. spinosum L. extracts presented the strongest anticancerous and antioxidant effects. In vivo, ascites cell viability decreased after T. pratense L. and green coffee bean extracts administration, whereas the oxidative stress reduction potential was important in tumor samples after T. pratense L. Cell viability was also decreased after administration of cyclophosphamide associated with X. spinosum L. and T. pratense L. extracts, respectively. These results suggested that T. pratense L. or X. spinosum L. extracts in combination with chemotherapy can induce lipid peroxidation in tumor cells and decrease the tumor viability especially, T. pratense L. extract.

3.
Int J Radiat Biol ; 98(1): 18-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34586971

RESUMO

BACKGROUND AND PURPOSE: Radon and its radioactive progenies are the most important source of ionizing radiation of natural origin, being classified as a Group 1 carcinogen. The aim of this study is to investigate the genotoxic effects of a wide range of indoor radon concentrations, as well as the kinetics of the process of repairing DNA-induced lesions by a challenging dose of gamma irradiation. MATERIAL AND METHODS: Female subjects residing in the Baita-Stei radon priority area were selected as the exposed group. The reference group was comprised of women from the same county (Bihor), but located in an area with an average indoor radon concentration typical of the county from which they were taken. Radon concentration values of 300 Bq/m3 and 148 Bq/m3, respectively, were chosen as a threshold in order to capture the impact of radon exposure between the groups. The alkaline comet assay was used in order to measure the DNA damage, as well as the repair kinetics at 2 and 24 h after 2 Gy challenging doses of gamma irradiation using peripheral blood lymphocytes. From the serum of the subjects, the oxidative damage by 8-hydroxydeoxyguanosine as well as the PARP induction was evaluated. The chromosomal aberrations were evaluated using the Cytokinesis Block MicroNucleus Assay. RESULTS: A statistically significant increase was observed in terms of DNA-induced lesions assessed by comet assay for the exposed group compared to the reference group. A positive correlation was obtained between DNA damage and the annual effective dose, respectively with the radon progenies concentrations. A statistically significant difference was also observed for the frequency of the micronuclei between the exposed - reference groups. Significantly faster repair kinetics of DNA-induced lesions was recorded for the first 2 h after gamma irradiation in the reference group compared to the exposed group. Using the threshold of 300 Bq/m3 for radon concentration, faster kinetics of DNA damage repair for people exposed to low radon concentrations, compared to those exposed to higher concentrations for the second phase of DNA repair kinetics was observed. CONCLUSION: An increased radiosensitivity of lymphocytes, as well as slower repair kinetics, may be associated with exposure to higher indoor radon concentrations.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , DNA , Dano ao DNA , Feminino , Humanos , Testes para Micronúcleos , Radônio/efeitos adversos , Radônio/análise
4.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440679

RESUMO

The concern for implementing bioactive nutraceuticals in antioxidant-related therapies is of great importance for skin homeostasis in benign or malignant diseases. In order to elucidate some novel insights of Lycium barbarum (Goji berry) activity on skin cells, the present study focused on its active compound zeaxanthin. By targeting the stemness markers CD44 and CD105, with deep implications in skin oxidative stress mechanisms, we revealed, for the first time, selectivity in zeaxanthin activity. When applied in vitro on BJ human fibroblast cell line versus the A375 malignant melanoma cells, despite the moderate cytotoxicity, the zeaxanthin-rich extracts 1 and 2 were able to downregulate significantly the CD44 and CD105 membrane expression and extracellular secretion in A375, and to upregulate them in BJ cells. At mechanistic level, the present study is the first to demonstrate that the zeaxanthin-rich Goji extracts are able to influence selectively the mitogen-activated protein kinases (MAPK): ERK, JNK and p38 in normal BJ versus tumor-derived A375 skin cells. These results point out towards the applications of zeaxanthin from L. barbarum as a cytoprotective agent in normal skin and raises questions about its use as an antitumor prodrug alone or in combination with standard therapy.


Assuntos
Adesão Celular/efeitos dos fármacos , Lycium/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Zeaxantinas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Frutas/química , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Extratos Vegetais/isolamento & purificação , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Zeaxantinas/isolamento & purificação
6.
J Exp Clin Cancer Res ; 39(1): 241, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187552

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous disease with aggressive behavior and an unfavorable prognosis rate. Due to the lack of surface receptors, TNBC must be intensely investigated in order to establish a suitable treatment for patients with this pathology. Chemoresistance is an important reason for therapeutic failure in TNBC. METHOD: The aim of this study was to investigate the effect of doxorubicin in TNBC cell lines and to highlight cellular and molecular alterations after a long exposure to doxorubicin. RESULTS: The results revealed that doxorubicin significantly increased the half maximal inhibitory concentration (IC50) values at P12 and P24 compared to parenteral cells P0. Modifications in gene expression were investigated through microarray technique, and for detection of mutational pattern was used Next Generation Sequencing (NGS). 196 upregulated and 115 downregulated genes were observed as effect of multiple dose exposure, and 15 overexpressed genes were found to be involved in drug resistance. Also, the presence of some additional mutations in both cell lines was observed. CONCLUSION: The outcomes of this research may provide novel biomarkers for drug resistance in TNBC. Also, this activity can highlight the potential mechanisms associated with drug resistance, as well as the potential therapies to counteract these mechanisms.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Feminino , Humanos , Masculino , Prognóstico , Neoplasias de Mama Triplo Negativas/genética
7.
Hear Res ; 388: 107893, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006874

RESUMO

BACKGROUND: Antitumor agents based on platinum have gained a well-established place in the treatment of several forms of cancer. Their efficiency is hampered by serious toxic effects against healthy tissues as well. Ototoxicity is a serious side effect leading to hearing impairment and represents an important issue affecting the patients' quality of life. The currently used platinum chemotherapeutics exert different toxicity towards cochlear cells. The aim of our study was to answer some questions regarding the differential uptake and cellular pharmacodynamics of Cisplatin (CDDP), Carboplatin (CBDCA) and Oxaliplatin (L-OHP) in the HEI-OC1 cochlear cell line. METHODS: We studied the expression of copper transporters CTR1, ATP7A and ATP7B which are presumably involved in the uptake, cellular transport and efflux of platinum compounds by immunofluorescence microscopy and flow-cytometry. The cellular uptake of the compounds was evaluated through the determination of intracellular platinum concentration by atomic absorption spectroscopy. The effects of the treatment of HEI-OC1 cells with platinum compounds were also evaluated: cytotoxicity with the Cell Titer Blue viability test, formation of reactive oxygen species with 2',7' -dichlorofluorescein diacetate, genotoxicity with the comet assay and apoptosis with the cleaved PARP ELISA test. RESULTS: CTR1, ATP7A and ATP7B were all expressed by HEI-OC1 cells. The treatment with the platinum compounds led to a modulation of their expression, manifested in a differential platinum uptake. Treatment with Cisplatin led to the highest intracellular concentration of platinum compared to Oxaliplatin and Carboplatin at the same dose. Treatment with CuSO4 reduced platinum uptake of all the compounds, significantly in the case of Cisplatin and Carboplatin. CDDP was the most cytotoxic against HEI-OC1 cells, with an IC50 = 65.79  µM, compared to 611.7 µM for L-OHP and 882.9 µM for CBDCA, at the same molar concentration. The production of ROS was the most intense after CDDP, followed by L-OHP and CBDCA. In the comet assay, at the 100 µM concentration, L-OHP and CBDCA induced DNA adducts while CDDP induced adducts as well as DNA strand breaks. CBDCA and L-OHP lead to a significant increase of cleaved PARP at 24h (p < 0.001), suggesting an important apoptotic process induced by these compounds at the used concentrations. CONCLUSIONS: The results obtained in the current study suggest that the modulation of copper transporters locally may represent a new strategy against platinum drugs ototoxicity.


Assuntos
Antineoplásicos/toxicidade , Carboplatina/toxicidade , Cisplatino/toxicidade , Cóclea/efeitos dos fármacos , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Oxaliplatina/toxicidade , Animais , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Carboplatina/metabolismo , Linhagem Celular , Cisplatino/metabolismo , Cóclea/metabolismo , Cóclea/patologia , Relação Dose-Resposta a Droga , Camundongos , Ototoxicidade , Oxaliplatina/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Sci Rep ; 10(1): 2113, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034200

RESUMO

Assessing the possible biological effects of exposure to low doses of ionizing radiation (IR) is one of the prime challenges in radiation protection, especially in medical imaging. Today, radiobiological data on cone beam CT (CBCT) related biological effects are scarce. In children and adults, the induction of DNA double strand breaks (DSBs) in buccal mucosa cells and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and antioxidant capacity in saliva samples after CBCT examination were examined. No DNA DSBs induction was observed in children nor adults. In children only, an increase in 8-oxo-dG levels was observed 30 minutes after CBCT. At the same time an increase in antioxidant capacity was observed in children, whereas a decrease was observed in adults. Our data indicate that children and adults react differently to IR doses associated with CBCT. Fully understanding these differences could lead to an optimal use of CBCT in different age categories as well as improved radiation protection guidelines.


Assuntos
Tomografia Computadorizada de Feixe Cônico/efeitos adversos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA/efeitos da radiação , Oxirredução/efeitos da radiação , Tomografia Computadorizada de Feixe Cônico Espiral/efeitos adversos , Adulto , Criança , Feminino , Humanos , Masculino , Mucosa Bucal/efeitos da radiação , Estudos Prospectivos , Proteção Radiológica , Radiação Ionizante
9.
Dentomaxillofac Radiol ; 48(6): 20180428, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30912976

RESUMO

OBJECTIVES: Cone-beam CT (CBCT) is a medical imaging technique used in dental medicine. However, there are no conclusive data available indicating that exposure to X-ray doses used by CBCT are harmless. We aim, for the first time, to characterize the potential age-dependent cellular and subcellular effects related to exposure to CBCT imaging. Current objective is to describe and validate the protocol for characterization of cellular and subcellular changes after diagnostic CBCT. METHODS: Development and validation of a dedicated two-part protocol: 1) assessing DNA double strand breaks (DSBs) in buccal mucosal (BM) cells and 2) oxidative stress measurements in saliva samples. BM cells and saliva samples are collected prior to and 0.5 h after CBCT examination. BM cells are also collected 24 h after CBCT examination. DNA DSBs are monitored in BM cells via immunocytochemical staining for γH2AX and 53BP1. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and total antioxidant capacity are measured in saliva to assess oxidative damage. RESULTS: Validation experiments show that sufficient BM cells are collected (97.1 ± 1.4 %) and that γH2AX/53BP1 foci can be detected before and after CBCT examination. Collection and analysis of saliva samples, either sham exposed or exposed to IR, show that changes in 8-oxo-dG and total antioxidant capacity can be detected in saliva samples after CBCT examination. CONCLUSION: The DIMITRA Research Group presents a two-part protocol to analyze potential age-related biological differences following CBCT examinations. This protocol was validated for collecting BM cells and saliva and for analyzing these samples for DNA DSBs and oxidative stress markers, respectively.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Mucosa Bucal , Saliva , Tomografia Computadorizada de Feixe Cônico Espiral , Feminino , Humanos , Masculino , Mucosa Bucal/citologia , Raios X
10.
Dentomaxillofac Radiol ; 48(1): 20170462, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30168750

RESUMO

OBJECTIVES: Cone-beam CT (CBCT), a radiographic tool for diagnosis, treatment, and follow-up in dental practice, was introduced also in pediatric radiology, especially orthodontics. Such patients subjected to repetitive X-rays examinations may receive substantial levels of radiation doses. Ionizing radiation (IR), a recognized carcinogenic factor causing DNA double-strand breaks (DSBs) could be harmful to undifferentiated cells such as dental pulp stem cells (DPSCs) since inaccurately repaired or unrepaired DSBs may lead to malignant transformation. The H2AX and MRE11 proteins generated following DSBs formation and pro-inflammatory cytokines (CKs) secreted after irradiation are relevant candidates to monitor the cellular responses induced by CBCT. METHODS: DPSCs were extracted from human exfoliated deciduous teeth and their phenotype was assessed by immunocytochemistry and flow-cytometry. Cells were exposed to IR doses: 5.4-107.7 mGy, corresponding to 0.5-8 consecutive skull exposures, respectively. H2AX and MRE11 were detected in whole cells, while IL-1α, IL-6, IL-8, TNFα in supernatants, using enzyme-linked immunosorbent assay (ELISA) at different time points after exposure. RESULTS: The phosphorylation level of H2AX in DPSCs increased considerably at 0.5 h after exposure (p < 0.001 for 3, 5, 8 skull exposures and p < 0.05 for 1 skull exposure, respectively). MRE11 response could only be detected for the highest IR dose (p < 0.001) in the same interval. CKs secretion increased upon CBCT exposure according to doses and time. CONCLUSIONS: The DPSCs exposure to CBCT induces transient DNA damage and persistent inflammatory reaction in DPSCs drawing the attention on the potential risks of IR exposures and on the importance of dose monitoring in pediatric population.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Dano ao DNA , Células-Tronco , Dente Decíduo , Criança , Tomografia Computadorizada de Feixe Cônico/efeitos adversos , Humanos , Inflamação , Fosforilação , Células-Tronco/efeitos da radiação
11.
J Environ Pathol Toxicol Oncol ; 37(3): 261-272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30317975

RESUMO

Ultraviolet B radiation (UVB) activates mitogen-activated protein kinases (MAPK): p38, extracellular signal regulated (ERK), and c-Jun N-terminal (JNK) kinases in human skin cells. Human keratinocytes (KC) exposed to UVB secrete several cytokines (CK), among which the growth differentiation factor-15 (GDF-15) is augmented in inflammatory and aging processes and the granulocyte macrophage-colony stimulating factor (GM-CSF) is involved in cell proliferation, differentiation, and survival, and both CK have implications in skin carcinogenesis. We assessed p38, ERK, JNK, GDF-15, and GM-CSF in UVB-exposed skin cells and a red grape (Vitis vinifera) seed extract's (GSE) capacities to regulate these pathways in UVB-exposed KC. Two concentrations of the GSE extract were selected: GSE1 (37.5 µgEqGA/mL) and GSE2 (75 µgEqGA/mL) and a UVB dose (100 mJ/cm2) within the physiological range. Molecules were assessed with ELISA, semiquantitative results being confirmed by Western blot. UVB triggered the signaling molecules' phosphorylation and the concentrations of CK. All molecules but GM-CSF increased early, at 2 h, from UVB exposure while GM-CSF increased later (at 8 h). MAPK and GDF-15 were regulated by GSE1; GM-CSF, by the higher concentration, GSE2. The amplitude and kinetics of the responses were diverse according to time point, molecules, and the extract's concentration. GSE exerted beneficial effects on MAPK and CK triggered by UVB in human skin cells: reduction of phosphorylation of the assessed signaling molecules and anti-inflammatory effects. Targeting MAPK and specific inflammatory mediators such as GDF-15 and GM-CSF with GSE in UVB-induced skin cells represents a novel and a promising starting point for future photoprotection strategies.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Vitis/química , Linhagem Celular Transformada , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Sementes/química , Pele/citologia , Pele/efeitos da radiação , Raios Ultravioleta , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
J BUON ; 22(3): 568-577, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28730758

RESUMO

Cancer is one of the most difficult diseases to be treated. The particularities regarding the tumors' occurrence mechanism, their evolution under chemotherapy, disease-free interval, but also the increasing number of patients make cancer an intensively studied health domain. Although introduced in therapy since the early 80s, platinum derivatives play an essential role in anticancer therapy. Their use in therapy resulted in improving the patient quality of life and prolonging disease-free interval, which makes them still a benchmark for other anticancer compounds. However, adverse reactions and allergic reactions are a major impediment in therapy with platinum derivatives. This paper summarizes data about platinum derivatives through a multidisciplinary approach, starting from a chemical point of view and on to their mechanism of action, mechanism of cellular resistance, predictive factors for the outcome of chemotherapy such as micro RNAs (miRNAs), tumor suppressor protein p53, and the excision repair cross-complementing 1 protein (ERCC1).


Assuntos
Antineoplásicos/farmacologia , Compostos Organoplatínicos/farmacologia , Carboplatina/efeitos adversos , Carboplatina/química , Carboplatina/farmacologia , Cisplatino/efeitos adversos , Cisplatino/química , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Oxaliplatina/efeitos adversos , Oxaliplatina/química , Oxaliplatina/farmacologia , Proteína Supressora de Tumor p53/fisiologia
13.
Bioorg Med Chem Lett ; 27(11): 2345-2349, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28438541

RESUMO

Biologically active Knoevenagel condensates (1-14) of diarylheptanoids: 1,7-bis(3-methoxy-4-hydroxyphenyl)hepta-1,7-diene-3,5-dione and 1,7-bis(3-ethoxy-4-hydroxyphenyl)hepta-1,7-diene-3,5-dione, were synthesized and structurally characterized. Compounds 1-14 exhibited cytotoxicity against colon carcinoma cells, and their antiproliferative effect was associated with a significant decrease of multidrug resistance proteins. One of the underlying mechanisms of these effects is the reduction of intracellular and extracellular SOD enzymes by compounds 1, 12 and 14, which render the tumor cells more vulnerable to oxidative stress.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Diarileptanoides/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diarileptanoides/química , Humanos , Superóxido Dismutase/metabolismo
14.
Molecules ; 22(4)2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358339

RESUMO

New Pd(II) complexes of 1,7-bis(2-methoxyphenyl)hepta-1,6-diene-3,5-dione were synthesized and structurally characterized. The complexes were tested in vitro on human colon and hepatic carcinoma cell lines, normal hepatic cells and hematopoietic progenitor cells. Biological tests proved that Pd(II) complexes 1 and 2 (containing a curcumin derivative) exhibit a strong in vitro antitumor effect against the cells derived from human colorectal carcinoma and the hepatic metastasis of a colorectal carcinoma. Complex 1 has an outstanding inhibitory effect against BRAF-mutant colon carcinoma and hepatocarcinoma cell growth; 1 and 2 are both more active than the free ligand and have the capacity to trigger early apoptotic processes. By flow cytometric measurements, an important decrease of prominin-1 (CD133) molecule expression on tumor cells membrane was identified in cell populations subjected to 1 and 2. Quantitative immune enzymatic assay proved restrictions in stem cell factor (SCF) release by treated tumor cells. Although less cytotoxic, the free ligand inhibits the surface marker CD133 expression in hepatocarcinoma cells, and in HT-29 colon carcinoma. The new synthesized Pd(II) complexes 1 and 2 exhibit an important potential through their selective cytotoxic activity and by targeting the stem-like tumor cell populations, which leads to the tumor growth arrest and prevention of metastasis.


Assuntos
Antígeno AC133/metabolismo , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Paládio/química , Fator de Células-Tronco/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Neoplasias Hepáticas , Compostos Organometálicos/química
15.
Clujul Med ; 89(1): 72-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27004028

RESUMO

BACKGROUND AND AIMS: The depletion of the ozone layer allows overexposure of the skin to UV radiation, which is prolonged due to the increasing life expectancy, together with inappropriate life habits contribute to the increasing incidence of cutaneous malignancies. Plant extracts with antioxidant capacities are frequently employed as a means to protect skin against ultraviolet (UV) radiations, thus preventing skin cancers. In the present study we assessed a red grape seed extract (GSE) potential capacities to reduce ultraviolet B (UVB) radiation-induced reactive oxygen species (ROS) and subsequent apoptosis in a human keratinocytes cell line (HaCaT). We identified molecules and pathways modulated by the GSE through which this may exert its photoprotective effect. METHODS: The GSE was standardized according to its polyphenolic content and the most important biologically active compounds, such as epigallocatechin and epicatechin, catechin hydrate, procyanidin B and gallic acid were evidenced by high-performance liquid chromatography. According to the plant extract cytotoxicity on the HaCaT cell line, two concentrations were selected for testing from the non-toxic range: GSE1 (37.5 µgEqGA/ml) and GSE2 (75 µgEqGA/ml). The level of ROS was evaluated with CM-H2DCFDA assay, while apoptosis, Bax-α and NF-kß p65 proteins with ELISA and confirmed by western-blot. RESULTS: Both concentrations of the extract decreased the level of ROS in UVB-irradiated keratinocytes (p<0.001), whereas apoptosis and Bax-α pro-apoptotic protein were only reduced by the higher concentration (GSE2). The NF-kB p65 protein level registered increasing values in time after UVB exposure of the cells, while the tested plant extract re-established its level when its smaller concentration was used (GSE1). CONCLUSION: These results encourage further studies on this extract in order to identify other molecules and pathways through which this extract might exert its beneficial effects and also recommend its use as a potential photoprotective agent.

16.
J Biol Eng ; 8: 14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987458

RESUMO

BACKGROUND: The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional bone tissues. Adding bioactive materials can improve new bone formation and better osseointegration. Three types of titanium (Ti) implants were tested for in vitro biocompatibility in this comparative study: Ti6Al7Nb implants with 25% total porosity used as controls, implants infiltrated using a sol-gel method with hydroxyapatite (Ti HA) and silicatitanate (Ti SiO2). The behavior of human osteoblasts was observed in terms of adhesion, cell growth and differentiation. RESULTS: The two coating methods have provided different morphological and chemical properties (SEM and EDX analysis). Cell attachment in the first hour was slower on the Ti HA scaffolds when compared to Ti SiO2 and porous uncoated Ti implants. The Alamar blue test and the assessment of total protein content uncovered a peak of metabolic activity at day 8-9 with an advantage for Ti SiO2 implants. Osteoblast differentiation and de novo mineralization, evaluated by osteopontin (OP) expression (ELISA and immnocytochemistry), alkaline phosphatase (ALP) activity, calcium deposition (alizarin red), collagen synthesis (SIRCOL test and immnocytochemical staining) and osteocalcin (OC) expression, highlighted the higher osteoconductive ability of Ti HA implants. Higher soluble collagen levels were found for cells cultured in simple osteogenic differentiation medium on control Ti and Ti SiO2 implants. Osteocalcin (OC), a marker of terminal osteoblastic differentiation, was most strongly expressed in osteoblasts cultivated on Ti SiO2 implants. CONCLUSIONS: The behavior of osteoblasts depends on the type of implant and culture conditions. Ti SiO2 scaffolds sustain osteoblast adhesion and promote differentiation with increased collagen and non-collagenic proteins (OP and OC) production. Ti HA implants have a lower ability to induce cell adhesion and proliferation but an increased capacity to induce early mineralization. Addition of growth factors BMP-2 and TGFß1 in differentiation medium did not improve the mineralization process. Both types of infiltrates have their advantages and limitations, which can be exploited depending on local conditions of bone lesions that have to be repaired. These limitations can also be offset through methods of functionalization with biomolecules involved in osteogenesis.

17.
Chemistry ; 20(34): 10811-28, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24715574

RESUMO

A series of alkenyl-substituted titanocene compounds have been supported on the mesoporous silica-based material KIT-6. The corresponding functionalised materials were completely characterised by different techniques (solid-state multinuclear NMR spectroscopy, IR spectroscopy, N2 adsorption-desorption isotherms, X-ray fluorescence and diffraction, SEM and TEM) to observe the incorporation of the titanocene derivatives on the external surface of the material KIT-6. Both the titanocene compounds and the materials were tested in vitro against a wide variety of human cancer and normal cell lines. A very high cytotoxicity of the synthesised titanocene derivatives (IC50 values in the range of those described in the literature for the most active cytotoxic titanocene compounds), with selectivity towards cancer cell lines was observed. The cytotoxic activity of the materials is the highest reported to date for titanocene-functionalised materials. In addition, higher Ti uptake (from 4 to 23% of the initial amount of Ti) of the cells treated with materials was observed with respect to those treated with "free" titanocene derivatives (which gave Ti uptake values from 0.4 to 4.6% of the initial amount of Ti). Additional experiments with the titanocene derivatives and the functionalised materials revealed that changes to the morphological and functional dynamics of apoptosis occurred when the active titanocene species were incorporated into mesoporous materials. In addition, the materials could induce programmed cell death in tumour cell populations by impairing the damaged DNA repair mechanisms and by upregulation of intrinsic and extrinsic apoptotic signalling pathways.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Nanoestruturas/química , Compostos Organometálicos/química , Antineoplásicos/síntese química , Linhagem Celular , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Células HEK293 , Humanos , Células MCF-7 , Conformação Molecular , Nanoestruturas/ultraestrutura , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/metabolismo , Porosidade , Dióxido de Silício/química , Proteína bcl-X/metabolismo
18.
Metallomics ; 6(4): 833-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24413432

RESUMO

In cancer therapy the platinum-based drugs are used frequently with a good clinical outcome, but besides unwanted side effects which occur, the tumour cells subjected to treatment are prone to develop tolerance or even multidrug resistance (MDR). Metal compounds with a central atom other than platinum are efficient in targeting the chemoresistant cells, therefore the biological outcome of two recently synthesized gallium phosphinoarylbisthiolato complexes was studied, having the formula [X][Ga{PPh(2-SC6H4)2-κ(3)S,S',P}{PPh(2-SC6H4)2-κ(2)S,S'}] where [X] is either the NEt3H (1) or PPh4 (2) cation. Compounds 1 and 2 display in vitro cytotoxicity against both platinum-sensitive and platinum-resistant cell lines (A2780 and A2780cis). Morphological and ultrastructural evidence points toward their capacity to impair tumour cells survival. This behaviour is based on malignant cells capacity to selectively intake gallium, and to bind to the cellular DNA. They are able to cause massive DNA damage in treated cancer cells, focusing on 7-methylguanine and 8-oxoguanine sites and oxidizing the pyrimidine bases; this leads to early apoptosis of a significant percent of treated cells. The intrinsic and extrinsic apoptotic pathways are influenced through the modulation of gene expression following the treatment with complexes 1 and 2, which accompanies the negative regulation of P-glycoprotein 1 (Pgp-1), an important cellular ABC-type transporter from the multidrug resistance (MDR) family. The studied Ga(III) compounds demonstrated the capacity to counteract the chemoresistance mechanisms in the tumours defiant to standard drug action. Compound 2 shows a good anticancer potential and it could represent an alternative to platinum-based drugs especially in the situation of standard treatment failure.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Gálio/farmacologia , Neoplasias/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Dano ao DNA/efeitos dos fármacos , Gálio/química , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo
19.
BMC Genomics ; 14: 480, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23865481

RESUMO

BACKGROUND: Cancer cells frequently adopt cellular and molecular alterations and acquire resistance to cytostatic drugs. Chemotherapy with oxaliplatin is among the leading treatments for colorectal cancer with a response rate of 50%, inducing intrastrand cross-links on the DNA. Despite of this drug's efficiency, resistance develops in nearly all metastatic patients. Chemoresistance being of crucial importance for the drug's clinical efficiency this study aimed to contribute to the identification and description of some cellular and molecular alterations induced by prolonged oxaliplatin therapy. Resistance to oxaliplatin was induced in Colo320 (Colo320R) and HT-29 (HT-29R) colorectal adenocarcinoma cell lines by exposing the cells to increasing concentrations of the drug. Alterations in morphology, cytotoxicity, DNA cross-links formation and gene expression profiles were assessed in the parental and resistant variants with microscopy, MTT, alkaline comet and pangenomic microarray assays, respectively. RESULTS: Morphology analysis revealed epithelial-to-mesenchymal transition in the resistant vs parental cells suggesting alterations of the cells' adhesion complexes, through which they acquire increased invasiveness and adherence. Cytotoxicity measurements demonstrated resistance to oxaliplatin in both cell lines; Colo320 being more sensitive than HT-29 to this drug (P < 0.001). The treatment with oxaliplatin caused major DNA cross-links in both parental cell lines; in Colo320R small amounts of DNA cross-links were still detectable, while in HT-29R not. We identified 441 differentially expressed genes in Colo320R and 613 in HT-29R as compared to their parental counterparts (at least 1.5 -fold up- or down- regulation, p < 0.05). More disrupted functions and pathways were detected in HT-29R cell line than in Colo320R, involving genes responsible for apoptosis inhibition, cellular proliferation and epithelial-to-mesenchymal transition. Several upstream regulators were detected as activated in HT-29R cell line, but not in Colo320R. CONCLUSIONS: Our findings revealed a more resistant phenotype in HT-29R as compared to Colo320R and different cellular and molecular chemoresistance patterns induced by prolonged treatment with oxaliplatin in cell lines with identical origins (colorectal adenocarcinomas).


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/patologia , Reagentes de Ligações Cruzadas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Compostos Organoplatínicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Invasividade Neoplásica , Oxaliplatina , Fenótipo , Reprodutibilidade dos Testes , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
20.
Anticancer Drugs ; 23(10): 1032-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22614106

RESUMO

Platinum-based chemotherapeutic agents are considered among the most potent anticancer drugs used in the treatment of human tumors. Cisplatin is efficient in the treatment of testicular, ovarian, bladder, and head and neck carcinomas, although its use is limited by severe nephrotoxicity and ototoxicity and resistance. Oxaliplatin has consistently exerted antitumor activity in colon, ovarian, and lung cancers and shown less toxicity than its analogue. Given that most of the literature data are contradictory with respect to the cytotoxicity of these drugs and DNA adduct formation, the present study aimed to determine some of the potential underlying mechanisms in view of their cellular uptakes. We evaluated the cytotoxicity, DNA cross-link formation, and cellular uptake of cisplatin and oxaliplatin in Colo320, HT-29, and Caco-2 colorectal adenocarcinoma cell lines. Our results showed higher cytotoxicity of oxaliplatin in Colo320 (P<0.05) and HT-29 cell lines and of cisplatin in Caco-2 (P<0.05). Oxaliplatin induced more DNA cross-links than cisplatin in a dose-dependent manner in Colo320 cells (P<0.0001); in HT-29 and Caco-2 cells, the induction of DNA damage was not dose dependent. Multiple accumulation of cisplatin versus oxaliplatin occurred in all the cell types, doses, and time points we tested. Oxaliplatin showed more potent biological activities versus cisplatin in terms of a significantly lower cellular uptake. In addition to their analogous mechanisms of action, these drugs might activate different signal transduction pathways, ultimately leading to apoptotic DNA fragmentation and cell death. DNA damage, although perhaps the most important, represents only one aspect of the multiple effects of platinum drugs.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Dano ao DNA , Compostos Organoplatínicos/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Células CACO-2 , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , DNA de Neoplasias/efeitos dos fármacos , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Células HT29 , Humanos , Oxaliplatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...