Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1215, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869085

RESUMO

Diagnosis of drug-induced liver injury (DILI) and its distinction from other liver diseases are significant challenges in drug development and clinical practice. Here, we identify, confirm, and replicate the biomarker performance characteristics of candidate proteins in patients with DILI at onset (DO; n = 133) and follow-up (n = 120), acute non-DILI at onset (NDO; n = 63) and follow-up (n = 42), and healthy volunteers (HV; n = 104). Area under the receiver operating characteristic curve (AUC) for cytoplasmic aconitate hydratase, argininosuccinate synthase, carbamoylphosphate synthase, fumarylacetoacetase, fructose-1,6-bisphosphatase 1 (FBP1) across cohorts achieved near complete separation (range: 0.94-0.99) of DO and HV. In addition, we show that FBP1, alone or in combination with glutathione S-transferase A1 and leukocyte cell-derived chemotaxin 2, could potentially assist in clinical diagnosis by distinguishing NDO from DO (AUC range: 0.65-0.78), but further technical and clinical validation of these candidate biomarkers is needed.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Proteômica , Humanos , Argininossuccinato Sintase , Biomarcadores , Antígenos CD8 , Frutose
2.
FASEB J ; 37(3): e22804, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753402

RESUMO

Normal human tissue is a critical reference control in biomedical research. However, the type of tissue donor can significantly affect the underlying biology of the samples. We investigated the impact of tissue donor source type by performing transcriptomic analysis on healthy kidney tissue from three donor source types: cadavers, organ donors, and normal-adjacent tissue from surgical resections of clear cell renal cell carcinomas, and we compared the gene expression profiles to those of clear cell renal cell carcinoma samples. Comparisons among the normal samples revealed general similarity, with notable differences in gene expression pathways involving immune system and inflammatory processes, response to extracellular stimuli, ion transport, and metabolism. When compared to tumors, the transcriptomic profiles of the normal adjacent tissue were highly similar to the profiles from cadaveric and organ donor tissue samples, arguing against the presence of a field cancerization effect in clear cell renal cell carcinoma. We conclude that all three normal source types are suitable for reference kidney control samples, but important differences must be noted for particular research areas and tissue banking strategies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Transcriptoma , Rim , Neoplasias Renais/genética , Doadores de Tecidos
3.
Cell Rep ; 38(12): 110553, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320716

RESUMO

The Btla inhibitory receptor limits innate and adaptive immune responses, both preventing the development of autoimmune disease and restraining anti-viral and anti-tumor responses. It remains unclear how the functions of Btla in diverse lymphocytes contribute to immunoregulation. Here, we show that Btla inhibits activation of genes regulating metabolism and cytokine signaling, including Il6 and Hif1a, indicating a regulatory role in humoral immunity. Within mucosal Peyer's patches, we find T-cell-expressed Btla-regulated Tfh cells, while Btla in T or B cells regulates GC B cell numbers. Treg-expressed Btla is required for cell-intrinsic Treg homeostasis that subsequently controls GC B cells. Loss of Btla in lymphocytes results in increased IgA bound to intestinal bacteria, correlating with altered microbial homeostasis and elevations in commensal and pathogenic bacteria. Together our studies provide important insights into how Btla functions as a checkpoint in diverse conventional and regulatory lymphocyte subsets to influence systemic immune responses.


Assuntos
Imunidade Humoral , Linfócitos T Reguladores , Linfócitos B , Mucosa Intestinal , Transdução de Sinais
4.
J Hepatol ; 75(5): 1083-1095, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34242700

RESUMO

BACKGROUND & AIMS: Immune checkpoint inhibitors (ICIs) are associated with immune-related adverse events (irAEs) which are more severe when ICIs are used in combination. We aimed to use a mouse model to elucidate the molecular mechanisms of immune-related hepatitis, one of the common irAEs associated with ICIs. METHODS: Immune phenotyping and molecular profiling were performed on Pdcd1-/- mice treated with anti-CTLA4 and/or the IDO1 inhibitor epacadostat or a 4-1BB agonistic antibody. RESULTS: ICI combination-induced hepatitis and 4-1BB agonist-mediated hepatitis share similar features yet maintain distinct immune signatures. Both were characterized by an expansion of periportal infiltrates and pan-zonal inflammation albeit with different morphologic characteristics. In both cases, infiltrates were predominantly CD4+ and CD8+ T cells with upregulated T-cell activation markers, ICOS and CD44. Depletion of CD8+ T cells abolished ICI-mediated hepatitis. Single-cell transcriptomics revealed that the hepatitis induced by combination ICIs is associated with a robust immune activation signature in all subtypes of T cells and T helper 1 skewing. Expression profiling revealed a central role for IFNγ and liver monocyte-derived macrophages in promoting a pro-inflammatory T-cell response to ICI combination and 4-1BB agonism. CONCLUSION: We developed a novel mouse model which offers significant value in yielding deeper mechanistic insight into immune-mediated liver toxicity associated with various immunotherapies. LAY SUMMARY: Hepatitis is one of the common immune-related adverse events in cancer patients receiving immune checkpoint inhibitor (ICI) therapy. The mechanisms of ICI-induced hepatitis are not well understood. In this paper, we identify key molecular mechanisms mediating immune intracellular crosstalk between liver T cells and macrophages in response to ICI in a mouse model.


Assuntos
Hepatite/imunologia , Células Mieloides/metabolismo , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Imunoterapia/métodos , Imunoterapia/estatística & dados numéricos , Camundongos , Monócitos/imunologia
5.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33822844

RESUMO

Regnase-1 is an emerging regulator of immune responses with essential roles in the posttranscriptional control of immune cell activation. Regnase-1 is expressed in B cells; however, its B cell-specific functions remain unknown. Here, we demonstrate that Regnase-1 prevents severe autoimmune pathology and show its essential role in maintaining B cell homeostasis. Using Cre driver mice for ablation of Regnase-1 at various stages of B cell development, we demonstrate that loss of Regnase-1 leads to aberrant B cell activation and differentiation, resulting in systemic autoimmunity and early morbidity. The basis of these findings was informed by gene expression data revealing a regulatory role for Regnase-1 in the suppression of a transcriptional program that promotes B cell activation, survival, and differentiation. Overall, our study shows that Regnase-1 exerts critical control of B cell activation, which is required for prevention of immunopathology.


Assuntos
Autoimunidade/genética , Linfócitos B/metabolismo , Homeostase/genética , Ativação Linfocitária/genética , Ribonucleases/genética , Animais , Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Camundongos Knockout , Camundongos Transgênicos , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Ribonucleases/metabolismo
6.
Infect Immun ; 89(6)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33753412

RESUMO

The lymphotoxin ß receptor (LTßR) plays an essential role in the initiation of immune responses to intracellular pathogens. In mice, the LTßR is crucial for surviving acute toxoplasmosis; however, until now, a functional analysis was largely incomplete. Here, we demonstrate that the LTßR is a key regulator required for the intricate balance of adaptive immune responses. Toxoplasma gondii-infected LTßR-deficient (LTßR-/-) mice show globally altered interferon-γ (IFN-γ) regulation, reduced IFN-γ-controlled host effector molecule expression, impaired T cell functionality, and an absent anti-parasite-specific IgG response, resulting in a severe loss of immune control of the parasites. Reconstitution of LTßR-/- mice with toxoplasma immune serum significantly prolongs survival following T. gondii infection. Notably, analysis of RNA-seq data clearly indicates a specific effect of T. gondii infection on the B cell response and isotype switching. This study uncovers the decisive role of the LTßR in cytokine regulation and adaptive immune responses to control T. gondii.


Assuntos
Imunidade Adaptativa , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Receptor beta de Linfotoxina/metabolismo , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Animais , Modelos Animais de Doenças , Receptor beta de Linfotoxina/genética , Camundongos , Camundongos Knockout , Toxoplasmose/parasitologia
7.
J Immunol ; 204(5): 1085-1090, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969387

RESUMO

Lymphotoxin ß receptor (LTßR) signaling is crucial for lymphoid tissue organogenesis and immune homeostasis. To identify novel regulatory mechanisms for signaling, we implemented a two-step screen that uses coexpression analysis of human fibroblasts undergoing LTßR stimulation and affinity-purification mass spectrometry for the LTßR signaling protein TNFR-associated factor 3 (TRAF3). We identify Ewing sarcoma (EWS) protein as a novel LTßR signaling component that associates with TRAF3 but not with TNFR-associated factor 2 (TRAF2). The EWS:TRAF3 complex forms under unligated conditions that are disrupted following activation of the LTßR. We conclude that EWS limits expression of proinflammatory molecules, GM-CSF, and ERK-2, promoting immune homeostasis.


Assuntos
Receptor beta de Linfotoxina/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Complexos Multiproteicos/imunologia , Proteína EWS de Ligação a RNA/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Células HEK293 , Humanos , Receptor beta de Linfotoxina/genética , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Complexos Multiproteicos/genética , Proteína EWS de Ligação a RNA/genética , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/imunologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/imunologia
8.
Front Immunol ; 10: 2903, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921164

RESUMO

Genome-wide co-expression analysis is often used for annotating novel gene functions from high-dimensional data. Here, we developed an R package with a Shiny visualization app that creates immuno-networks from RNAseq data using a combination of Weighted Gene Co-expression Network Analysis (WGCNA), xCell immune cell signatures, and Bayesian Network Learning. Using a large publicly available RNAseq dataset we generated a Gene Module-Immune Cell (GMIC) network that predicted causal relationships between DEAH-box RNA helicase (DHX)15 and genes associated with humoral immunity, suggesting that DHX15 may regulate B cell fate. Deletion of DHX15 in mouse B cells led to impaired lymphocyte development, reduced peripheral B cell numbers, and dysregulated expression of genes linked to antibody-mediated immune responses similar to the genes predicted by the GMIC network. Moreover, antigen immunization of mice demonstrated that optimal primary IgG1 responses required DHX15. Intrinsic expression of DHX15 was necessary for proliferation and survival of activated of B cells. Altogether, these results support the use of co-expression networks to elucidate fundamental biological processes.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Imunomodulação , RNA Helicases/genética , Animais , Biópsia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Imunomodulação/genética , Camundongos , RNA Helicases/metabolismo
9.
Nucleic Acids Res ; 42(4): 2473-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24243841

RESUMO

Picornaviruses constitute a large group of viruses comprising medically and economically important pathogens such as poliovirus, coxsackievirus, rhinovirus, enterovirus 71 and foot-and-mouth disease virus. A unique characteristic of these viruses is the use of a viral peptide (VPg) as primer for viral RNA synthesis. As a consequence, all newly formed viral RNA molecules possess a covalently linked VPg peptide. It is known that VPg is enzymatically released from the incoming viral RNA by a host protein, called TDP2, but it is still unclear whether the release of VPg is necessary to initiate RNA translation. To study the possible requirement of VPg release for RNA translation, we developed a novel method to modify the genomic viral RNA with VPg linked via a 'non-cleavable' bond. We coupled an azide-modified VPg peptide to an RNA primer harboring a cyclooctyne [bicyclo[6.1.0]nonyne (BCN)] by a copper-free 'click' reaction, leading to a VPg-triazole-RNA construct that was 'non-cleavable' by TDP2. We successfully ligated the VPg-RNA complex to the viral genomic RNA, directed by base pairing. We show that the lack of VPg unlinkase does not influence RNA translation or replication. Thus, the release of the VPg from the incoming viral RNA is not a prerequisite for RNA translation or replication.


Assuntos
Peptídeos/química , Picornaviridae/genética , Biossíntese de Proteínas , RNA Viral/biossíntese , RNA Viral/química , Replicação Viral , Química Click , Enterovirus/genética , Genoma Viral , Células HeLa , Humanos , Picornaviridae/fisiologia , RNA/química , Proteínas Virais/química
10.
Cell Rep ; 2(5): 1187-96, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23142662

RESUMO

RIG-I and MDA5 are cytosolic RNA sensors that play a critical role in innate antiviral responses. Major advances have been made in identifying RIG-I ligands, but our knowledge of the ligands for MDA5 remains restricted to data from transfection experiments mostly using poly(I:C), a synthetic dsRNA mimic. Here, we dissected the IFN-α/ß-stimulatory activity of different viral RNA species produced during picornavirus infection, both by RNA transfection and in infected cells in which specific steps of viral RNA replication were inhibited. Our results show that the incoming genomic plus-strand RNA does not activate MDA5, but minus-strand RNA synthesis and production of the 7.5 kbp replicative form trigger a strong IFN-α/ß response. IFN-α/ß production does not rely on plus-strand RNA synthesis and thus generation of the partially double-stranded replicative intermediate. This study reports MDA5 activation by a natural RNA ligand under physiological conditions.


Assuntos
RNA Helicases DEAD-box/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Animais , Linhagem Celular , RNA Helicases DEAD-box/química , Células HeLa , Cavalos , Humanos , Helicase IFIH1 Induzida por Interferon , Interferon-alfa/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Camundongos , Picornaviridae/genética , Poli I-C/farmacologia , RNA de Cadeia Dupla/genética , RNA Mensageiro/metabolismo , Transfecção , Regulação para Cima/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 109(36): 14634-9, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22908287

RESUMO

A previously described mammalian cell activity, called VPg unlinkase, specifically cleaves a unique protein-RNA covalent linkage generated during the viral genomic RNA replication steps of a picornavirus infection. For over three decades, the identity of this cellular activity and its normal role in the uninfected cell had remained elusive. Here we report the purification and identification of VPg unlinkase as the DNA repair enzyme, 5'-tyrosyl-DNA phosphodiesterase-2 (TDP2). Our data show that VPg unlinkase activity in different mammalian cell lines correlates with their differential expression of TDP2. Furthermore, we show that recombinant TDP2 can cleave the protein-RNA linkage generated by different picornaviruses without impairing the integrity of viral RNA. Our results reveal a unique RNA repair-like function for TDP2 and suggest an unusual role in host-pathogen interactions for this cellular enzyme. On the basis of the identification of TDP2 as a potential antiviral target, our findings may lead to the development of universal therapeutics to treat the millions of individuals afflicted annually with diseases caused by picornaviruses, including myocarditis, aseptic meningitis, encephalitis, hepatitis, and the common cold.


Assuntos
Proteínas Nucleares/metabolismo , Picornaviridae/metabolismo , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Proteínas de Ligação a DNA , Eletroforese em Gel de Poliacrilamida , Evolução Molecular , Imunofluorescência , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Microscopia Confocal , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases , Picornaviridae/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética
12.
PLoS One ; 6(3): e16559, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21408223

RESUMO

Using poliovirus, the prototypic member of Picornaviridae, we have further characterized a host cell enzymatic activity found in uninfected cells, termed "unlinkase," that recognizes and cleaves the unique 5' tyrosyl-RNA phosphodiester bond found at the 5' end of picornavirus virion RNAs. This bond connects VPg, a viral-encoded protein primer essential for RNA replication, to the viral RNA; it is cleaved from virion RNA prior to its engaging in protein synthesis as mRNA. Due to VPg retention on nascent RNA strands and replication templates, but not on viral mRNA, we hypothesize that picornaviruses utilize unlinkase activity as a means of controlling the ratio of viral RNAs that are translated versus those that either serve as RNA replication templates or are encapsidated. To test our hypothesis and further characterize this enzyme, we have developed a novel assay to detect unlinkase activity. We demonstrate that unlinkase activity can be detected using this assay, that this unique activity remains unchanged over the course of a poliovirus infection in HeLa cells, and that unlinkase activity is unaffected by the presence of exogenous VPg or anti-VPg antibodies. Furthermore, we have determined that unlinkase recognizes and cleaves a human rhinovirus-poliovirus chimeric substrate with the same efficiency as the poliovirus substrate.


Assuntos
Engenharia Genética , Diester Fosfórico Hidrolases/metabolismo , Poliovirus/genética , Poliovirus/metabolismo , RNA Viral/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Extratos Celulares , Ensaios Enzimáticos , Genoma Viral/genética , Células HeLa , Humanos , Marcação por Isótopo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Rhinovirus/metabolismo , Ribonuclease T1/metabolismo , Especificidade por Substrato , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...