Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J C Part Fields ; 83(11): 1061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021215

RESUMO

We present a novel Active Magnetic Shield (AMS), designed and implemented for the n2EDM experiment at the Paul Scherrer Institute. The experiment will perform a high-sensitivity search for the electric dipole moment of the neutron. Magnetic-field stability and control is of key importance for n2EDM. A large, cubic, 5 m side length, magnetically shielded room (MSR) provides a passive, quasi-static shielding-factor of about 105 for its inner sensitive volume. The AMS consists of a system of eight complex, feedback-controlled compensation coils constructed on an irregular grid spanned on a volume of less than 1000 m3 around the MSR. The AMS is designed to provide a stable and uniform magnetic-field environment around the MSR, while being reasonably compact. The system can compensate static and variable magnetic fields up to ±50µT (homogeneous components) and ±5µT/m (first-order gradients), suppressing them to a few µT in the sub-Hertz frequency range. The presented design concept and implementation of the AMS fulfills the requirements of the n2EDM experiment and can be useful for other applications, where magnetically silent environments are important and spatial constraints inhibit simpler geometrical solutions.

2.
Eur Phys J A Hadron Nucl ; 57(4): 152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776778

RESUMO

Psychological bias towards, or away from, prior measurements or theory predictions is an intrinsic threat to any data analysis. While various methods can be used to try to avoid such a bias, e.g. actively avoiding looking at the result, only data blinding is a traceable and trustworthy method that can circumvent the bias and convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment (nEDM), as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it is hard to inject a false signal. We present an algorithm that modifies the data without influencing the experiment. Results of an automated analysis of the data are used to change the recorded spin state of a few neutrons within each measurement cycle. The flexible algorithm may be applied twice (or more) to the data, thus providing the option of sequentially applying various blinding offsets for separate analysis steps with independent teams. The subtle manner in which the data are modified allows one subsequently to adjust the algorithm and to produce a re-blinded data set without revealing the initial blinding offset. The method was designed for the 2015/2016 measurement campaign of the nEDM experiment at the Paul Scherrer Institute. However, it can be re-used with minor modification for the follow-up experiment n2EDM, and may be suitable for comparable projects elsewhere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...