Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 224: 119110, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126630

RESUMO

Ion exchange technology removes ionic compounds from waters effectively but treatment of the spent regenerant is expensive. The bioregeneration of sulfate-laden strong base anion exchange resin was successfully tested using both pure and mixed sulfate-reducing bacterial cultures. The resin was first used for removal of sulfate from neutral (pH 6.7 ± 0.5) synthetic sodium sulfate solutions, after which the spent resin was regenerated by incubating with a viable sulfate-reducing bacterial culture in batch and column modes. In the batch bioregeneration tests, the achieved bioregeneration was 36-95% of the original capacity of the fresh resin (112 mg SO42-/g) and it increased with regeneration time (1-14 days). The capacity achieved in the column tests during 24 hours of bioregeneration was 107 mg SO42-/g after the first regeneration cycle. During the bioregeneration, sulfate was mainly reduced by the sulfate-reducing bacteria (approx. 60%), but part of it was only detached from the resins (approx. 30%). The resin-attached sulfate was most likely replaced with ions present in the liquid sulfate-reducing bacterial culture (e.g., HCO3-, HS-, and Cl-). During the subsequent exhaustion cycles with the bioregenerated resin, the pH of the treated sodium sulfate solution increased from the original 6.7 ± 0.5 to around 9. The study showed that biological sulfate reduction could be used for sulfate removal in combination with ion exchange, and that the exhausted ion exchange resins could be regenerated using a liquid sulfate-reducing bacterial culture without producing any brine.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Resinas de Troca Aniônica/química , Troca Iônica , Resinas de Troca Iônica , Sulfatos/química , Óxidos de Enxofre , Poluentes Químicos da Água/química
2.
Environ Pollut ; 252(Pt A): 281-288, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31158656

RESUMO

Biological sulfate removal is challenging in cold climates due to the slower metabolism of mesophilic bacteria; however, cold conditions also offer the possibility to isolate bacteria that have adapted to low temperatures. The present research focused on the cold acclimation and characterization of sulfate-reducing bacterial (SRB) consortia enriched from an Arctic sediment sample from northern Finland. Based on 16S rDNA analysis, the most common sulfate-reducing bacterium in all enriched consortia was Desulfobulbus, which belongs to the δ-Proteobacteria. The majority of the cultivated consortia were able to reduce sulfate at temperatures as low as 6 °C with succinic acid as a carbon source. The sulfate reduction rates at 6 °C varied from 13 to 42 mg/L/d. The cultivation medium used in this research was a Postgate medium supplemented with lactate, ethanol or succinic acid. The obtained consortia were able to grow with lactate and succinic acid but surprisingly not with ethanol. Enriched SRB consortia are useful for the biological treatment of sulfate-containing industrial wastewaters in cold conditions.


Assuntos
Aclimatação/fisiologia , Biodegradação Ambiental , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/isolamento & purificação , Bactérias Redutoras de Enxofre/metabolismo , Regiões Árticas , Carbono/metabolismo , Temperatura Baixa , Etanol/metabolismo , Finlândia , Ácido Láctico/metabolismo , Consórcios Microbianos , Mineração , Oxirredução , RNA Ribossômico 16S/genética , Ácido Succínico/metabolismo , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...