Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stud Mycol ; 107: 1-66, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38600958

RESUMO

The order Eurotiales is diverse and includes species that impact our daily lives in many ways. In the past, its taxonomy was difficult due to morphological similarities, which made accurate identification of species difficult. This situation improved and stabilised with recent taxonomic and nomenclatural revisions that modernised Aspergillus, Penicillium and Talaromyces. This was mainly due to the availability of curated accepted species lists and the publication of comprehensive DNA sequence reference datasets. This has also led to a sharp increase in the number of new species described each year with the accepted species lists in turn also needing regular updates. The focus of this study was to review the 160 species described between the last list of accepted species published in 2020 until 31 December 2022. To review these species, single-gene phylogenies were constructed and GCPSR (Genealogical Concordance Phylogenetic Species Recognition) was applied. Multi-gene phylogenetic analyses were performed to further determine the relationships of the newly introduced species. As a result, we accepted 133 species (37 Aspergillus, two Paecilomyces, 59 Penicillium, two Rasamsonia, 32 Talaromyces and one Xerochrysium), synonymised 22, classified four as doubtful and created a new combination for Paraxerochrysium coryli, which is classified in Xerochrysium. This brings the number of accepted species to 453 for Aspergillus, 12 for Paecilomyces, 535 for Penicillium, 14 for Rasamsonia, 203 for Talaromyces and four for Xerochrysium. We accept the newly introduced section Tenues (in Talaromyces), and series Hainanici (in Aspergillus sect. Cavernicolarum) and Vascosobrinhoana (in Penicillium sect. Citrina). In addition, we validate the invalidly described species Aspergillus annui and A. saccharicola, and series Annuorum (in Aspergillus sect. Flavi), introduce a new combination for Dichlaena lentisci (type of the genus) and place it in a new section in Aspergillus subgenus Circumdati, provide an updated description for Rasamsonia oblata, and list excluded and recently synonymised species that were previously accepted. This study represents an important update of the accepted species lists in Eurotiales. Taxonomic novelties: New sections: Aspergillus section Dichlaena Visagie, Kocsubé & Houbraken. New series: Aspergillus series Annuorum J.J. Silva, B.T. Iamanaka, Frisvad. New species: Aspergillus annui J.J. Silva, M.H.P. Fungaro, Frisvad, M.H. Taniwaki & B.T. Iamanaka; Aspergillus saccharicola J.J. Silva, Frisvad, M.H.P. Fungaro, M.H. Taniwaki & B.T. Iamanaka. New combinations: Aspergillus lentisci (Durieu & Mont.) Visagie, Malloch, L. Kriegsteiner, Samson & Houbraken; Xerochrysium coryli (Crous & Decock) Visagie & Houbraken. Citation: Visagie CM, Yilmaz N, Kocsubé S, Frisvad JC, Hubka V, Samson RA, Houbraken J (2024). A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Studies in Mycology 107: 1-66. doi: 10.3114/sim.2024.107.01.

2.
Stud Mycol ; 102: 53-93, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36760461

RESUMO

Aspergillus series Versicolores members occur in a wide range of environments and substrates such as indoor environments, food, clinical materials, soil, caves, marine or hypersaline ecosystems. The taxonomy of the series has undergone numerous re-arrangements including a drastic reduction in the number of species and subsequent recovery to 17 species in the last decade. The identification to species level is however problematic or impossible in some isolates even using DNA sequencing or MALDI-TOF mass spectrometry indicating a problem in the definition of species boundaries. To revise the species limits, we assembled a large dataset of 518 strains. From these, a total of 213 strains were selected for the final analysis according to their calmodulin (CaM) genotype, substrate and geography. This set was used for phylogenetic analysis based on five loci (benA, CaM, RPB2, Mcm7, Tsr1). Apart from the classical phylogenetic methods, we used multispecies coalescence (MSC) model-based methods, including one multilocus method (STACEY) and five single-locus methods (GMYC, bGMYC, PTP, bPTP, ABGD). Almost all species delimitation methods suggested a broad species concept with only four species consistently supported. We also demonstrated that the currently applied concept of species is not sustainable as there are incongruences between single-gene phylogenies resulting in different species identifications when using different gene regions. Morphological and physiological data showed overall lack of good, taxonomically informative characters, which could be used for identification of such a large number of existing species. The characters expressed either low variability across species or significant intraspecific variability exceeding interspecific variability. Based on the above-mentioned results, we reduce series Versicolores to four species, namely A. versicolor, A. creber, A. sydowii and A. subversicolor, and the remaining species are synonymized with either A. versicolor or A. creber. The revised descriptions of the four accepted species are provided. They can all be identified by any of the five genes used in this study. Despite the large reduction in species number, identification based on phenotypic characters remains challenging, because the variation in phenotypic characters is high and overlapping among species, especially between A. versicolor and A. creber. Similar to the 17 narrowly defined species, the four broadly defined species do not have a specific ecology and are distributed worldwide. We expect that the application of comparable methodology with extensive sampling could lead to a similar reduction in the number of cryptic species in other extensively studied Aspergillus species complexes and other fungal genera. Citation: Sklenár F, Glässnerová K, Jurjevic Z, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolarík M, Hubka V (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Studies in Mycology 102 : 53-93. doi: 10.3114/sim.2022.102.02.

3.
Stud Mycol ; 102: 95-132, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36760462

RESUMO

The Aspergillus series Nigri contains biotechnologically and medically important species. They can produce hazardous mycotoxins, which is relevant due to the frequent occurrence of these species on foodstuffs and in the indoor environment. The taxonomy of the series has undergone numerous rearrangements, and currently, there are 14 species accepted in the series, most of which are considered cryptic. Species-level identifications are, however, problematic or impossible for many isolates even when using DNA sequencing or MALDI-TOF mass spectrometry, indicating a possible problem in the definition of species limits or the presence of undescribed species diversity. To re-examine the species boundaries, we collected DNA sequences from three phylogenetic markers (benA, CaM and RPB2) for 276 strains from series Nigri and generated 18 new whole-genome sequences. With the three-gene dataset, we employed phylogenetic methods based on the multispecies coalescence model, including four single-locus methods (GMYC, bGMYC, PTP and bPTP) and one multilocus method (STACEY). From a total of 15 methods and their various settings, 11 supported the recognition of only three species corresponding to the three main phylogenetic lineages: A. niger, A. tubingensis and A. brasiliensis. Similarly, recognition of these three species was supported by the GCPSR approach (Genealogical Concordance Phylogenetic Species Recognition) and analysis in DELINEATE software. We also showed that the phylogeny based on benA, CaM and RPB2 is suboptimal and displays significant differences from a phylogeny constructed using 5 752 single-copy orthologous proteins; therefore, the results of the delimitation methods may be subject to a higher than usual level of uncertainty. To overcome this, we randomly selected 200 genes from these genomes and performed ten independent STACEY analyses, each with 20 genes. All analyses supported the recognition of only one species in the A. niger and A. brasiliensis lineages, while one to four species were inconsistently delimited in the A. tubingensis lineage. After considering all of these results and their practical implications, we propose that the revised series Nigri includes six species: A. brasiliensis, A. eucalypticola, A. luchuensis (syn. A. piperis), A. niger (syn. A. vinaceus and A. welwitschiae), A. tubingensis (syn. A. chiangmaiensis, A. costaricensis, A. neoniger and A. pseudopiperis) and A. vadensis. We also showed that the intraspecific genetic variability in the redefined A. niger and A. tubingensis does not deviate from that commonly found in other aspergilli. We supplemented the study with a list of accepted species, synonyms and unresolved names, some of which may threaten the stability of the current taxonomy. Citation: Bian C, Kusuya Y, Sklenár F, D'hooge E, Yaguchi T, Ban S, Visagie CM, Houbraken J, Takahashi H, Hubka V (2022). Reducing the number of accepted species in Aspergillus series Nigri. Studies in Mycology 102: 95-132. doi: 10.3114/sim.2022.102.03.

4.
Stud Mycol ; 102: 1-51, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36760463

RESUMO

Aspergillus section Candidi encompasses white- or yellow-sporulating species mostly isolated from indoor and cave environments, food, feed, clinical material, soil and dung. Their identification is non-trivial due to largely uniform morphology. This study aims to re-evaluate the species boundaries in the section Candidi and present an overview of all existing species along with information on their ecology. For the analyses, we assembled a set of 113 strains with diverse origin. For the molecular analyses, we used DNA sequences of three house-keeping genes (benA, CaM and RPB2) and employed species delimitation methods based on a multispecies coalescent model. Classical phylogenetic methods and genealogical concordance phylogenetic species recognition (GCPSR) approaches were used for comparison. Phenotypic studies involved comparisons of macromorphology on four cultivation media, seven micromorphological characters and growth at temperatures ranging from 10 to 45 °C. Based on the integrative approach comprising four criteria (phylogenetic and phenotypic), all currently accepted species gained support, while two new species are proposed (A. magnus and A. tenebricus). In addition, we proposed the new name A. neotritici to replace an invalidly described A. tritici. The revised section Candidi now encompasses nine species, some of which manifest a high level of intraspecific genetic and/or phenotypic variability (e.g., A. subalbidus and A. campestris) while others are more uniform (e.g., A. candidus or A. pragensis). The growth rates on different media and at different temperatures, colony colours, production of soluble pigments, stipe dimensions and vesicle diameters contributed the most to the phenotypic species differentiation. Taxonomic novelties: New species: Aspergillus magnus Glässnerová & Hubka; Aspergillus neotritici Glässnerová & Hubka; Aspergillus tenebricus Houbraken, Glässnerová & Hubka. Citation: Glässnerová K, Sklenár F, Jurjevic Z, Houbraken J, Yaguchi T, Visagie CM, Gené J, Siqueira JPZ, Kubátová A, Kolarík M, Hubka V (2022). A monograph of Aspergillus section Candidi. Studies in Mycology 102: 1-51. doi: 10.3114/sim.2022.102.01.

5.
Stud Mycol ; 98: 100116, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34466168

RESUMO

Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).

6.
Fungal Syst Evol ; 8: 81-89, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35005574

RESUMO

A fungal survey of the Gcwihaba Cave from Botswana found Aspergillus to be one of the more common fungal genera isolated. The 81 Aspergillus strains were identified using CaM sequences and comparing these to a curated reference dataset. Nineteen species were identified representing eight sections (sections Candidi, Circumdati, Flavi, Flavipedes, Nidulantes, Nigri, Terrei and Usti). One strain could not be identified. Morphological characterisation and multigene phylogenetic analyses confirmed it as a new species in section Flavipedes and we introduce it below as A. okavangoensis. The new species is most similar to A. iizukae, both producing conidiophores with vesicles typically wider than 20 µm. The new species, however, does not produce Hülle cells and its colonies grow slower than those of A. iizukae on CYA at 37 °C (14-15 vs 18-21 mm) and CREA (15-16 vs 23-41mm).

7.
Persoonia ; 46: 129-162, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35935895

RESUMO

The Fusarium fujikuroi species complex (FFSC) includes more than 60 phylogenetic species (phylospecies) with both phytopathological and clinical importance. Because of their economical relevance, a stable taxonomy and nomenclature is crucial for species in the FFSC. To attain this goal, we examined type specimens and representative cultures of several species by employing morphology and phylogenetic analyses based on partial gene fragments of the translation elongation factor 1-alpha (tef1), beta-tubulin (tub2), calmodulin (cmdA), RNA polymerase largest subunit (rpb1) and RNA polymerase II second largest subunit (rpb2). Based on these results three new species were delimited in the FFSC. Two of these phylospecies clustered within the African clade, and one in the American clade. Epitypes were also designated for six previously described FFSC species including F. proliferatum and F. verticillioides, and a neotype designated for F. subglutinans. Furthermore, both F. acutatum and F. ophioides, which were previously invalidly published, are validated. Citation: Yilmaz N, Sandoval-Denis M, Lombard L, et al. 2021. Redefining species limits in the Fusarium fujikuroi species complex. Persoonia 46: 129-162. https://doi.org/10.3767/persoonia.2021.46.05.

8.
Persoonia ; 46: 163-187, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35935896

RESUMO

A survey of Penicillium in the fynbos biome from South Africa resulted in the isolation of 61 species of which 29 were found to be new. In this study we focus on Penicillium section Canescentia, providing a phylogenetic re-evaluation based on the analysis of partial beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequence data. Based on phylogenies we show that five fynbos species are new and several previously assigned synonyms of P. canescens and P. janczewskii should be considered as distinct species. As such, we provide descriptions for the five new species and introduce the new name P. elizabethiae for the illegitimate P. echinatum. We also update the accepted species list and synonymies of section Canescentia species and provide a review of extrolites produced by these species. Citation: Visagie CM, Frisvad JC, Houbraken J, et al. 2021. A re-evaluation of Penicillium section Canescentia, including the description of five new species. Persoonia 46: 163-187. https://doi.org/10.3767/persoonia.2021.46.06.

9.
Fungal Syst Evol ; 6: 157-231, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32904192

RESUMO

Seven new genera, 26 new species, 10 new combinations, two epitypes, one new name, and 20 interesting new host and / or geographical records are introduced in this study. New genera are: Italiofungus (based on Italiofungus phillyreae) on leaves of Phillyrea latifolia (Italy); Neolamproconium (based on Neolamproconium silvestre) on branch of Tilia sp. (Ukraine); Neosorocybe (based on Neosorocybe pini) on trunk of Pinus sylvestris (Ukraine); Nothoseptoria (based on Nothoseptoria caraganae) on leaves of Caragana arborescens (Russia); Pruniphilomyces (based on Pruniphilomyces circumscissus) on Prunus cerasus (Russia); Vesiculozygosporium (based on Vesiculozygosporium echinosporum) on leaves of Muntingia calabura (Malaysia); Longiseptatispora (based on Longiseptatispora curvata) on leaves of Lonicera tatarica (Russia). New species are: Barrmaelia serenoae on leaf of Serenoa repens (USA); Chaetopsina gautengina on leaves of unidentified grass (South Africa); Chloridium pini on fallen trunk of Pinus sylvestris (Ukraine); Cadophora fallopiae on stems of Reynoutria sachalinensis (Poland); Coleophoma eucalyptigena on leaf litter of Eucalyptus sp. (Spain); Cylindrium corymbiae on leaves of Corymbia maculata (Australia); Diaporthe tarchonanthi on leaves of Tarchonanthus littoralis (South Africa); Elsinoe eucalyptorum on leaves of Eucalyptus propinqua (Australia); Exophiala quercina on dead wood of Quercus sp., (Germany); Fusarium californicum on cambium of budwood of Prunus dulcis (USA); Hypomyces gamsii on wood of Alnus glutinosa (Ukraine); Kalmusia araucariae on leaves of Araucaria bidwillii (USA); Lectera sambuci on leaves of Sambucus nigra (Russia); Melanomma populicola on fallen twig of Populus canadensis (Netherlands), Neocladosporium syringae on branches of Syringa vulgarishorus (Ukraine); Paraconiothyrium iridis on leaves of Iris pseudacorus (Ukraine); Pararoussoella quercina on branch of Quercus robur (Ukraine); Phialemonium pulveris from bore dust of deathwatch beetle (France); Polyscytalum pinicola on needles of Pinus tecunumanii (Malaysia); Acervuloseptoria fraxini on Fraxinus pennsylvanica (Russia); Roussoella arundinacea on culms of Arundo donax (Spain); Sphaerulina neoaceris on leaves of Acer negundo (Russia); Sphaerulina salicicola on leaves of Salix fragilis (Russia); Trichomerium syzygii on leaves of Syzygium cordatum (South Africa); Uzbekistanica vitis-viniferae on dead stem of Vitis vinifera (Ukraine); Vermiculariopsiella eucalyptigena on leaves of Eucalyptus sp. (Australia).

10.
Stud Mycol ; 95: 253-292, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32855741

RESUMO

The taxonomy and nomenclature of the genus Aspergillus and its associated sexual (teleomorphic) genera have been greatly stabilised over the last decade. This was in large thanks to the accepted species list published in 2014 and associated metadata such as DNA reference sequences released at the time. It had a great impact on the community and it has never been easier to identify, publish and describe the missing Aspergillus diversity. To further stabilise its taxonomy, it is crucial to not only discover and publish new species but also to capture infraspecies variation in the form of DNA sequences. This data will help to better characterise and distinguish existing species and make future identifications more robust. South Africa has diverse fungal communities but remains largely unexplored in terms of Aspergillus with very few sequences available for local strains. In this paper, we re-identify Aspergillus previously accessioned in the PPRI and MRC culture collections using modern taxonomic approaches. In the process, we re-identify strains to 63 species, describe seven new species and release a large number of new DNA reference sequences.

11.
Stud Mycol ; 95: 5-169, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32855739

RESUMO

The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted: Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae. The Eurotiales includes 28 genera: 15 genera are accommodated in the Aspergillaceae (Aspergillago, Aspergillus, Evansstolkia, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Pseudohamigera, Pseudopenicillium, Sclerocleista, Warcupiella, Xerochrysium and Xeromyces), eight in the Trichocomaceae (Acidotalaromyces, Ascospirella, Dendrosphaera, Rasamsonia, Sagenomella, Talaromyces, Thermomyces, Trichocoma), two in the Thermoascaceae (Paecilomyces, Thermoascus) and one in the Penicillaginaceae (Penicillago). The classification of the Elaphomycetaceae was not part of this study, but according to literature two genera are present in this family (Elaphomyces and Pseudotulostoma). The use of an infrageneric classification system has a long tradition in Aspergillus and Penicillium. Most recent taxonomic studies focused on the sectional level, resulting in a well-established sectional classification in these genera. In contrast, a series classification in Aspergillus and Penicillium is often outdated or lacking, but is still relevant, e.g., the allocation of a species to a series can be highly predictive in what functional characters the species might have and might be useful when using a phenotype-based identification. The majority of the series in Aspergillus and Penicillium are invalidly described and here we introduce a new series classification. Using a phylogenetic approach, often supported by phenotypic, physiologic and/or extrolite data, Aspergillus is subdivided in six subgenera, 27 sections (five new) and 75 series (73 new, one new combination), and Penicillium in two subgenera, 32 sections (seven new) and 89 series (57 new, six new combinations). Correct identification of species belonging to the Eurotiales is difficult, but crucial, as the species name is the linking pin to information. Lists of accepted species are a helpful aid for researchers to obtain a correct identification using the current taxonomic schemes. In the most recent list from 2014, 339 Aspergillus, 354 Penicillium and 88 Talaromyces species were accepted. These numbers increased significantly, and the current list includes 446 Aspergillus (32 % increase), 483 Penicillium (36 % increase) and 171 Talaromyces (94 % increase) species, showing the large diversity and high interest in these genera. We expanded this list with all genera and species belonging to the Eurotiales (except those belonging to Elaphomycetaceae). The list includes 1 187 species, distributed over 27 genera, and contains MycoBank numbers, collection numbers of type and ex-type cultures, subgenus, section and series classification data, information on the mode of reproduction, and GenBank accession numbers of ITS, beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences.

12.
Fungal Syst Evol ; 5: 1-15, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32467912

RESUMO

Penicillium species were commonly isolated during a fungal survey of bat hibernacula in New Brunswick and Quebec, Canada. Strains were isolated from arthropods, bats, rodents (i.e. the deer mouse Peromyscus maniculatus), their dung, and cave walls. Hundreds of fungal strains were recovered, of which Penicillium represented a major component of the community. Penicillium strains were grouped by colony characters on Blakeslee's malt extract agar. DNA sequencing of the secondary identification marker, beta-tubulin, was done for representative strains from each group. In some cases, ITS and calmodulin were sequenced to confirm identifications. In total, 13 species were identified, while eight strains consistently resolved into a unique clade with P. discolor, P. echinulatum and P. solitum as its closest relatives. Penicillium speluncae is described using macroand micromorphological characters, multigene phylogenies (including ITS, beta-tubulin, calmodulin and RNA polymerase II second largest subunit) and extrolite profiles. Major extrolites produced by the new species include cyclopenins, viridicatins, chaetoglobosins, and a microheterogenous series of cyclic and linear tetrapeptides.

13.
Mycotoxin Res ; 35(1): 9-16, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30088215

RESUMO

A tremorgenic syndrome occurs in dogs following ingestion of moldy walnuts, and Penicillium crustosum has been implicated as the offending fungus. This is the first report of suspected moldy walnut toxicosis in man. An adult male ingested approximately eight fungal-infected walnut kernels and after 12 h experienced tremors, generalized pain, incoordination, confusion, anxiety, and diaphoresis. Following symptomatic and supportive treatment at a local hospital, the man made an uneventful recovery. A batch of walnuts (approximately 20) was submitted for mycological culturing and identification as well as for mycotoxin analysis. Penicillium crustosum Thom was the most abundant fungus present on walnut samples, often occurring as monocultures on isolation plates. Identifications were confirmed with DNA sequences. The kernels and shells of the moldy walnuts as well as P. crustosum isolates plated on yeast extract sucrose (YES) and Czapek yeast autolysate (CYA) agars and incubated in the dark at 25 °C for 7 days were screened for tremorgenic mycotoxins and known P. crustosum metabolites using a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method. A relatively low penitrem A concentration of only 1.9 ng/g was detected on the walnut kernels when compared to roquefortine C concentrations of 21.7 µg/g. A similar result was obtained from P. crustosum isolates cultured on YES and CYA, with penitrem A concentrations much lower (0.6-6.4 µg per g mycelium/agar) compared to roquefortine C concentrations (172-1225 µg/g). The authors surmised that besides penitrem A, roquefortine C might also play an additive or synergistic role in intoxication of man.


Assuntos
Contaminação de Alimentos , Juglans/microbiologia , Micotoxicose/diagnóstico , Nozes/microbiologia , Penicillium/isolamento & purificação , Cromatografia Líquida , Microbiologia de Alimentos , Compostos Heterocíclicos de 4 ou mais Anéis/análise , Humanos , Indóis/análise , Masculino , Pessoa de Meia-Idade , Micotoxinas/efeitos adversos , Neurotoxinas/análise , Piperazinas/análise , Espectrometria de Massas em Tandem
14.
Persoonia ; 43: 223-425, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32214501

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.

15.
Stud Mycol ; 88: 161-236, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29158611

RESUMO

Aspergillus section Restricti together with sister section Aspergillus (formerly Eurotium) comprises xerophilic species, that are able to grow on substrates with low water activity and in extreme environments. We adressed the monophyly of both sections within subgenus Aspergillus and applied a multidisciplinary approach for definition of species boundaries in sect. Restricti. The monophyly of sections Aspergillus and Restricti was tested on a set of 102 isolates comprising all currently accepted species and was strongly supported by Maximum likelihood (ML) and Bayesian inferrence (BI) analysis based on ß-tubulin (benA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) loci. More than 300 strains belonging to sect. Restricti from various isolation sources and four continents were characterized by DNA sequencing, and 193 isolates were selected for phylogenetic analyses and phenotypic studies. Species delimitation methods based on multispecies coalescent model were employed on DNA sequences from four loci, i.e., ID region of rDNA (ITS + 28S), CaM, benA and RPB2, and supported recognition of 21 species, including 14 new. All these species were also strongly supported in ML and BI analyses. All recognised species can be reliably identified by all four examined genetic loci. Phenotype analysis was performed to support the delimitation of new species and includes colony characteristics on seven cultivation media incubated at several temperatures, growth on an osmotic gradient (six media with NaCl concentration from 0 to 25 %) and analysis of morphology including scanning electron microscopy. The micromorphology of conidial heads, vesicle dimensions, temperature profiles and growth parameters in osmotic gradient were useful criteria for species identification. The vast majority of species in sect. Restricti produce asperglaucide, asperphenamate or both in contrast to species in sect. Aspergillus. Mycophenolic acid was detected for the first time in at least six members of the section. The ascomata of A. halophilicus do not contain auroglaucin, epiheveadride or flavoglaucin which are common in sect. Aspergillus, but shares the echinulins with sect. Aspergillus.

16.
Stud Mycol ; 88: 37-135, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28860671

RESUMO

Aspergillus section Aspergillus (formerly the genus Eurotium) includes xerophilic species with uniseriate conidiophores, globose to subglobose vesicles, green conidia and yellow, thin walled eurotium-like ascomata with hyaline, lenticular ascospores. In the present study, a polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of this section. Over 500 strains from various culture collections and new isolates obtained from indoor environments and a wide range of substrates all over the world were identified using calmodulin gene sequencing. Of these, 163 isolates were subjected to molecular phylogenetic analyses using sequences of ITS rDNA, partial ß-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) genes. Colony characteristics were documented on eight cultivation media, growth parameters at three incubation temperatures were recorded and micromorphology was examined using light microscopy as well as scanning electron microscopy to illustrate and characterize each species. Many specific extrolites were extracted and identified from cultures, including echinulins, epiheveadrides, auroglaucins and anthraquinone bisanthrons, and to be consistent in strains of nearly all species. Other extrolites are species-specific, and thus valuable for identification. Several extrolites show antioxidant effects, which may be nutritionally beneficial in food and beverages. Important mycotoxins in the strict sense, such as sterigmatocystin, aflatoxins, ochratoxins, citrinin were not detected despite previous reports on their production in this section. Adopting a polyphasic approach, 31 species are recognized, including nine new species. ITS is highly conserved in this section and does not distinguish species. All species can be differentiated using CaM or RPB2 sequences. For BenA, Aspergillus brunneus and A. niveoglaucus share identical sequences. Ascospores and conidia morphology, growth rates at different temperatures are most useful characters for phenotypic species identification.

17.
Stud Mycol ; 88: 237-267, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29317789

RESUMO

Xerophilic fungi, especially Aspergillus species, are prevalent in the built environment. In this study, we employed a combined culture-independent (454-pyrosequencing) and culture-dependent (dilution-to-extinction) approach to investigate the mycobiota of indoor dust collected from 93 buildings in 12 countries worldwide. High and low water activity (aw) media were used to capture mesophile and xerophile biodiversity, resulting in the isolation of approximately 9 000 strains. Among these, 340 strains representing seven putative species in Aspergillus subgenus Polypaecilum were isolated, mostly from lowered aw media, and tentatively identified based on colony morphology and internal transcribed spacer rDNA region (ITS) barcodes. Further morphological study and phylogenetic analyses using sequences of ITS, ß-tubulin (BenA), calmodulin (CaM), RNA polymerase II second largest subunit (RPB2), DNA topoisomerase 1 (TOP1), and a pre-mRNA processing protein homolog (TSR1) confirmed the isolation of seven species of subgenus Polypaecilum, including five novel species: A. baarnensis, A. keratitidis, A. kalimae sp. nov., A. noonimiae sp. nov., A. thailandensis sp. nov., A. waynelawii sp. nov., and A. whitfieldii sp. nov. Pyrosequencing detected six of the seven species isolated from house dust, as well as one additional species absent from the cultures isolated, and three clades representing potentially undescribed species. Species were typically found in house dust from subtropical and tropical climates, often in close proximity to the ocean or sea. The presence of subgenus Polypaecilum, a recently described clade of xerophilic/xerotolerant, halotolerant/halophilic, and potentially zoopathogenic species, within the built environment is noteworthy.

18.
Persoonia ; 36: 37-56, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27616787

RESUMO

The taxonomy of Talaromyces rugulosus, T. wortmannii and closely related species, classified in Talaromyces sect. Islandici, is reviewed in this paper. The species of Talaromyces sect. Islandici have restricted growth on MEA and CYA, generally have yellow mycelia and produce rugulosin and/or skyrin. They are important in biotechnology (e.g. T. rugulosus, T. wortmannii) and in medicine (e.g. T. piceus, T. radicus). The taxonomy of sect. Islandici was resolved using a combination of morphological, extrolite and phylogenetic data, using the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) concept, with special focus on the T. rugulosus and T. wortmannii species complexes. In this paper, we synonymise T. variabilis, Penicillium concavorugulosum and T. sublevisporus with T. wortmannii, and introduce four new species as T. acaricola, T. crassus, T. infraolivaceus and T. subaurantiacus. Finally, we provide a synoptic table for the identification of the 19 species classified in the section.

19.
Persoonia ; 36: 134-55, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27616790

RESUMO

The genus Torulomyces was characterised by species that typically have conidiophores consisting of solitary phialides that produce long chains of conidia connected by disjunctors. Based on the phylogenetic position of P. lagena (generic ex-neotype), the genus and its seven species were transferred to Penicillium and classified in sect. Torulomyces along with P. cryptum and P. lassenii. The aim of this study was to review the species currently classified in sect. Torulomyces using morphology and phylogenies of the ITS, BenA, CaM and RPB2 regions. Based on our results, we accept 16 species in sect. Torulomyces, including 12 new species described as P. aeris, P. austricola, P. cantabricum, P. catalonicum, P. oregonense, P. marthae-christenseniae, P. riverlandense, P. tubakianum, P. variratense, P. williamettense, P. wisconsinense and P. wollemiicola. In addition, we reclassify P. laeve and P. ovatum in sect. Exilicaulis and correct the typification of P. lagena. We provide descriptions and notes on the identification of the species.

20.
Persoonia ; 36: 247-80, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27616792

RESUMO

We introduce 15 new species of Penicillium isolated from a diverse range of locations, including Canada, Costa Rica, Germany, Italy, New Zealand, Tanzania, USA and the Dry Valleys of Antarctica, from a variety of habitats, including leaf surfaces in tropical rain forests, soil eaten by chimpanzees, infrabuccal pockets of carpenter ants, intestinal contents of caterpillars and soil. The new species are classified in sections Aspergilloides (1), Canescentia (2), Charlesia (1), Exilicaulis (3), Lanata-Divaricata (7) and Stolkia (1). Each is characterised and described using classical morphology, LC-MS based extrolite analyses and multigene phylogenies based on ITS, BenA and CaM. Significant extrolites detected include andrastin, pulvilloric acid, penitrem A and citrinin amongst many others.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...