Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epigenetics ; 16(2): 144-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32635858

RESUMO

Drug resistance is one of the trademark features of Cancer Stem Cells (CSCs). We and others have recently shown that paucity of functional death receptors (DR4/5) on the cell surface of tumour cells is one of the major reasons for drug resistance, but their involvement in the context of in CSCs is poorly understood. By harnessing CSC specific cytotoxic function of salinomycin, we discovered a critical role of epigenetic modulator EZH2 in regulating the expression of DRs in colon CSCs. Our unbiased proteome profiler array approach followed by ChIP analysis of salinomycin treated cells indicated that the expression of DRs, especially DR4 is epigenetically repressed in colon CSCs. Concurrently, EZH2 knockdown demonstrated increased expression of DR4/DR5, significant reduction of CSC phenotypes such as spheroid formation in-vitro and tumorigenic potential in-vivo in colon cancer. TCGA data analysis of human colon cancer clinical samples shows strong inverse correlation between EZH2 and DR4. Taken together, this study provides an insight about epigenetic regulation of DR4 in colon CSCs and advocates that drug-resistant colon cancer can be therapeutically targeted by combining TRAIL and small molecule EZH2 inhibitors.


Assuntos
Neoplasias do Colo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Células-Tronco Neoplásicas , Piranos/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Metilação de DNA , Epigênese Genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética
2.
Haematologica ; 105(4): 971-986, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31371410

RESUMO

Leukemia stem cells contribute to drug-resistance and relapse in chronic myeloid leukemia (CML) and BCR-ABL1 inhibitor monotherapy fails to eliminate these cells, thereby necessitating alternate therapeutic strategies for patients CML. The peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone downregulates signal transducer and activator of transcription 5 (STAT5) and in combination with imatinib induces complete molecular response in imatinib-refractory patients by eroding leukemia stem cells. Thiazolidinediones such as pioglitazone are, however, associated with severe side effects. To identify alternate therapeutic strategies for CML we screened Food and Drug Administration-approved drugs in K562 cells and identified the leprosy drug clofazimine as an inhibitor of viability of these cells. Here we show that clofazimine induced apoptosis of blood mononuclear cells derived from patients with CML, with a particularly robust effect in imatinib-resistant cells. Clofazimine also induced apoptosis of CD34+38- progenitors and quiescent CD34+ cells from CML patients but not of hematopoietic progenitor cells from healthy donors. Mechanistic evaluation revealed that clofazimine, via physical interaction with PPARγ, induced nuclear factor kB-p65 proteasomal degradation, which led to sequential myeloblastoma oncoprotein and peroxiredoxin 1 downregulation and concomitant induction of reactive oxygen species-mediated apoptosis. Clofazimine also suppressed STAT5 expression and consequently downregulated stem cell maintenance factors hypoxia-inducible factor-1α and -2α and Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). Combining imatinib with clofazimine caused a far superior synergy than that with pioglitazone, with clofazimine reducing the half maximal inhibitory concentration (IC50) of imatinib by >4 logs and remarkably eroding quiescent CD34+ cells. In a K562 xenograft study clofazimine and imatinib co-treatment showed more robust efficacy than the individual treatments. We propose clinical evaluation of clofazimine in imatinib-refractory CML.


Assuntos
Hanseníase , Leucemia Mielogênica Crônica BCR-ABL Positiva , Preparações Farmacêuticas , Apoptose , Clofazimina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/genética , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , PPAR gama
3.
Eur J Pharmacol ; 854: 354-364, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822393

RESUMO

Obesity results in the chronic activation of innate immune system and subsequently sets in diabetes. Aim of the study was to investigate the immunometabolic role of brown adipose tissue (BAT) in the obesity. We performed both BAT transplantation as well as extirpation experiments in the mouse model of high-fat diet (HFD)-induced obesity. We carried out immune cell profiling in the stromal vascular fraction (SVF) isolated from epididymal white adipose tissue (eWAT). BAT transplantation reversed HFD-induced increase in body weight gain and insulin resistance without altering diet intake. Importantly, BAT transplantation attenuated the obesity-associated adipose tissue inflammation in terms of decreased pro-inflammatory M1-macrophages, cytotoxic CD8a T-cells and restored anti-inflammatory regulatory T-cells (Tregs) in the eWAT. BAT transplantation also improved endogenous BAT activity by elevating protein expression of browning markers (UCP-1, PRDM16 and PGC1α) in it. In addition, BAT transplantation promoted the eWAT expression of various genes involved in fatty acid oxidation (such as Elvol3 and Tfam,). In contrast, extirpation of the interscapular BAT exacerbated HFD-induced obesity, insulin resistance and adipose tissue inflammation (by increasing M1 macrophages, CD8a T-cell and decreasing Tregs in eWAT). Taken together, our results suggested an important role of BAT in combating obesity-associated metabolic complications. These results open a novel therapeutic option to target obesity and related metabolic disorders like type 2 diabetes.


Assuntos
Tecido Adiposo Marrom/transplante , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Biomarcadores/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia
4.
Int J Obes (Lond) ; 43(6): 1281-1294, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301967

RESUMO

BACKGROUND/OBJECTIVES: Chronic low-grade inflammation/meta-inflammation in adipose tissue leads to obesity-associated metabolic complications. Despite growing understanding, the roles of immune cell subsets, their interrelationship, and chronological events leading to progression of obesity-associated insulin resistance (IR) remains unclear. METHODS: We carried out temporal immunometabolic profiling of adipose tissue from C57BL/6 mice fed a high-fat diet (HFD) for 4, 8, 12, 16, and 20 weeks. We used clodronate sodium liposomes (CLODs) to deplete macrophages and disodium cromoglycate sodium liposomes (DSCGs) to stabilize mast cells. RESULTS: In the temporal HFD settings, mice showed progressive glucose intolerance, insulin resistance, and adipose tissue senescence. Histochemistry analysis of epididymal white adipose tissue (eWAT) using picro-sirius red and Masson's trichrome staining showed extensive collagen deposition in the 16th and 20th weeks. Flow cytometry analysis of the stromal vascular fraction (SVF) from eWAT revealed T-cell subsets as early-phase components and pro-inflammatory macrophages, as well as mast cells as the later phase components during obesity progression. In our therapeutic strategies, macrophage depletion by CLOD and mast stabilization by DSCG attenuated obesity, adipose tissue fibrosis, and improved whole-body glucose homeostasis. In addition, mast cell stabilization also attenuated senescence (p53 and X-gal staining) in eWAT, signifying the role of mast cells over macrophages during obesity. CONCLUSION: New-generation mast cell stabilizers can be exploited for the treatment of obesity-associated metabolic complications.


Assuntos
Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Envelhecimento/patologia , Dieta Hiperlipídica , Fibrose/patologia , Mastócitos/patologia , Obesidade/imunologia , Obesidade/metabolismo , Tecido Adiposo/patologia , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia
5.
Mol Cell Endocrinol ; 477: 15-28, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29753026

RESUMO

Various imperative studies support the notion that hyperinsulinemia (HI) itself serves as the common link between adipose tissue inflammation (ATI) and metabolic syndrome. However, the contribution of HI mediated ATI and its metabolic consequences are yet to be explored. We induced chronic HI per se in mice by administration of exogenous insulin for 8 weeks through mini-osmotic pumps. For the reduction of circulating insulin in response to excess calorie intake, we have partially ablated ß-cells by using streptozotocin (STZ) in the diet-induced obesity (DIO) and genetic mice models (db/db). Flow cytometry analysis was performed for the quantification of immune cells in stromal vascular fraction (SVF) isolated from epididymal white adipose tissue (eWAT). Our studies demonstrated that chronic HI augmented ATI in terms of elevated pro-inflammatory cells (M1 macrophages and NK-cells) and suppressed anti-inflammatory cells (M2 macrophages, eosinophils and regulatory T-cells). These results were correlated with altered obesity-associated metabolic phenotype. Partial reduction of circulating insulin level attenuated excess calorie-induced ATI and improved insulin sensitivity. Mechanistically, an imbalance in M1 and M2 macrophage proportions in eWAT promoted iNOS (inducible nitric oxide synthase): arginase-1 imbalance that resulted into extracellular matrix (ECM) deposition and insulin resistance (IR) development. However, iNOS-/- mice were protected from HI-induced M1:M2 macrophage imbalance, ECM deposition and IR in adipose tissue. Overall, we conclude that chronic HI per se contributed in ATI and iNOS corroborated ECM deposition.


Assuntos
Tecido Adiposo/patologia , Matriz Extracelular/metabolismo , Hiperinsulinismo/complicações , Inflamação/complicações , Óxido Nítrico/metabolismo , Células 3T3-L1 , Animais , Doença Crônica , Dieta Hiperlipídica , Modelos Animais de Doenças , Hiperinsulinismo/patologia , Inflamação/patologia , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/metabolismo , Obesidade/genética , Obesidade/patologia
6.
Front Immunol ; 9: 194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483912

RESUMO

Filarial parasites suppress, divert, or polarize the host immune response to aid their survival. However, mechanisms that govern the polarization of host MΦs during early filarial infection are not completely understood. In this study, we infected BALB/c mice with infective larvae stage-3 of Brugia malayi (Bm-L3) and studied their effect on the polarization of splenic MΦs. Results showed that MΦs displayed M2-phenotype by day 3 p.i. characterized by upregulated IL-4, but reduced IL-12 and Prostaglandin-D2 secretion. Increased arginase activity, higher arginase-1 but reduced NOS2 expression and poor phagocytic and antigen processing capacity was also observed. M2 MΦs supported T-cell proliferation and characteristically upregulated p-ERK but downregulated NF-κB-p65 and NF-κB-p50/105. Notably, Bm-L3 synergized with host regulatory T-cells (Tregs) and polarized M2 MΦs to regulatory MΦs (Mregs) by day 7 p.i., which secreted copious amounts of IL-10 and prostaglandin-E2. Mregs also showed upregulated expression levels of MHC-II, CD80, and CD86 and exhibited increased antigen-processing capacity but displayed impaired activation of NF-κB-p65 and NF-κB-p50/105. Neutralization of Tregs by anti-GITR + anti-CD25 antibodies checked the polarization of M2 MΦs to Mregs, decreased accumulation of regulatory B cells and inflammatory monocytes, and reduced secretion of IL-10, but enhanced IL-4 production and percentages of eosinophils, which led to Bm-L3 killing. In summary, we report hitherto undocumented effects of early Bm-L3 infection on the polarization of splenic MΦs and show how infective larvae deftly utilize the functional plasticity of host MΦs to establish themselves inside the host.


Assuntos
Brugia Malayi/imunologia , Diferenciação Celular/imunologia , Evasão da Resposta Imune , Macrófagos/imunologia , Animais , Proliferação de Células , Feminino , Filariose/imunologia , Interleucina-10/imunologia , Interleucina-12/imunologia , Interleucina-4/imunologia , Larva/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Baço/citologia , Baço/imunologia , Baço/parasitologia , Linfócitos T Reguladores/imunologia
7.
Eur J Pharmacol ; 822: 32-42, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29331565

RESUMO

Prevailing knowledge links chronic low-grade inflammation in the adipose tissue to obesity and its associated metabolic complications. In this study, we evaluated immunometabolic effects of a recently launched dual peroxisome proliferator-activated receptor (PPAR) α & γ agonist 'Saroglitazar' in a mouse model of diet-induced obesity (DIO). Body composition analysis revealed that saroglitazar treatment promoted hepatic weight gain, while attenuated epididymal white adipose tissue (eWAT) mass in DIO. In the eWAT of saroglitazar treated mice, histological analysis showed reduced adipocyte hypertrophy and matrix deposition (picrosirius red staining). Immunological profiling of stromal vascular fraction isolated from eWAT showed decreased pro-inflammatory cells (M1 macrophages, CD4 and CD8 T-cells) and increased anti-inflammatory M2 macrophages. Gene expression and western blot analysis suggested that saroglitazar promoted energy expenditure machinery and attenuated inflammatory as well as fibrotic markers in eWAT during DIO. In conclusion, for the first time we are reporting immunometabolic effects of dual PPARα & γ agonist saroglitazar in DIO and insulin resistance (IR). Saroglitazar exerted its beneficial effects on adipose tissue by limiting, diet-induced adipose tissue dysfunction, adipocyte hypertrophy, adipocyte cell damage and extracellular matrix deposition in obesity.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/patologia , Fenilpropionatos/farmacologia , Pirróis/farmacologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Hipertrofia/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Especificidade de Órgãos , Fenilpropionatos/uso terapêutico , Pirróis/uso terapêutico
8.
Infect Immun ; 85(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27799335

RESUMO

Filarial parasites cause functional impairment of host dendritic cells (DCs). However, the effects of early infection on individual DC subsets are not known. In this study, we infected BALB/c mice with infective stage 3 larvae of the lymphatic filarial parasite Brugia malayi (Bm-L3) and studied the effect on fluorescence-activated cell sorter (FACS)-sorted DC subsets. While myeloid DCs (mDCs) accumulated by day 3 postinfection (p.i.), lymphoid DCs (LDCs) and CD8+ plasmacytoid DCs (pDCs) peaked at day 7 p.i. in the spleens and mesenteric lymph nodes (mLNs) of infected mice. Increased tumor necrosis factor alpha (TNF-α) but reduced interleukin 12 (IL-12) and Toll-like receptor 4 (TLR4), -6, and -9 and reciprocal secretion of IL-4 and IL-10 were also observed across all DC subsets. Interestingly, Bm-L3 increased the expression of CD80 and CD86 across all DC subsets but decreased that of major histocompatibility complex class II (MHC-II) on mDCs and pDCs, resulting in their impaired antigen uptake and presentation capacities, but maximally attenuated the T-cell proliferation capacity of only mDCs. Furthermore, Bm-L3 increased phosphorylated p38 (p-p38), but not p-ERK, in mDCs and LDCs but downregulated them in pDCs, along with differential modulation of protein tyrosine phosphatases SHP-1, TCPTP, PTEN, and PTP1B across all DC subsets. Taken together, we report hitherto undocumented effects of early Bm-L3 infection on purified host DC subsets that lead to their functional impairment and attenuated host T-cell response.


Assuntos
Brugia Malayi/patogenicidade , Células Dendríticas/patologia , Células Dendríticas/parasitologia , Filariose/patologia , Filariose/parasitologia , Larva/parasitologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células/fisiologia , Células Dendríticas/metabolismo , Regulação para Baixo/fisiologia , Filariose/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-4/metabolismo , Ativação Linfocitária/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , PTEN Fosfo-Hidrolase/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Biochim Biophys Acta ; 1860(10): 2178-90, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27180173

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) inhibitor gefitinib (Iressa) is used for treating non-small cell lung cancer. Gefitinib also induces differentiation in acute myeloid leukemia (AML) cell lines and patient samples lacking EGFR by an unknown mechanism. Here we dissected the mechanism of gefitinib action responsible for its EGFR-independent effects. METHODS: Signaling events were analyzed by homogenous time-resolved fluorescence and immunoblotting. Cellular proliferation and differentiation were assessed by ATP measurement, trypan blue exclusion, 5-bromo-2'-deoxyuridine incorporation and flow-cytometry. Gefitinib and G protein-coupled receptor (GPCR) interactions were assessed by ß-arrestin recruitment, luciferase and radioligand competition assays. Role of histamine receptors (HR) in gefitinib actions were assessed by HR knockdown or pharmacological modulation. EGFR and HR interaction was assessed by co-immunoprecipitation. RESULTS: Gefitinib reduced cyclic AMP content in both AML and EGFR-expressing cells and induced ERK phosphorylation in AML cells. Dibutyryl-cAMP or PD98059 suppressed gefitinib-induced AML cell cytostasis and differentiation. Gefitinib bound to and modulated HRs with subtype selectivity. Pharmacological or genetic modulations of H2 and H4 HRs (H2R and H4R) not only suppressed gefitinib-induced cytostasis and differentiation of AML cells but also blocked EGFR and ERK1/2 inhibition in MDA-MB-231 cells. Moreover, in MDA-MB-231 cells gefitinib enhanced EGFR interaction with H4R that was blocked by H4R agonist 4-methyl histamine (4MH). CONCLUSION: HRs play critical roles in anti-cancer effects of gefitinib in both EGFR-deficient and EGFR-rich environments. GENERAL SIGNIFICANCE: We furnish fresh insights into gefitinib functions which may provide new molecular clues to its efficacy and safety issues.


Assuntos
Receptores ErbB/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Quinazolinas/administração & dosagem , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos H2/genética , Receptores Histamínicos/genética , Antineoplásicos/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Receptores ErbB/antagonistas & inibidores , Gefitinibe , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Histamínicos/metabolismo , Receptores Histamínicos H2/metabolismo , Receptores Histamínicos H4
10.
J Leukoc Biol ; 99(4): 619-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26489428

RESUMO

Eosinophils play a central role in the pathogenesis of tropical pulmonary eosinophilia, a rare, but fatal, manifestation of filariasis. However, no exhaustive study has been done to identify the genes and proteins of eosinophils involved in the pathogenesis of tropical pulmonary eosinophilia. In the present study, we established a mouse model of tropical pulmonary eosinophilia that mimicked filarial manifestations of human tropical pulmonary eosinophilia pathogenesis and used flow cytometry-assisted cell sorting and real-time RT-PCR to study the gene expression profile of flow-sorted, lung eosinophils and lung macrophages during tropical pulmonary eosinophilia pathogenesis. Our results show that tropical pulmonary eosinophilia mice exhibited increased levels of IL-4, IL-5, CCL5, and CCL11 in the bronchoalveolar lavage fluid and lung parenchyma along with elevated titers of IgE and IgG subtypes in the serum. Alveolar macrophages from tropical pulmonary eosinophilia mice displayed decreased phagocytosis, attenuated nitric oxide production, and reduced T-cell proliferation capacity, and FACS-sorted lung eosinophils from tropical pulmonary eosinophilia mice upregulated transcript levels of ficolin A and anti-apoptotic gene Bcl2,but proapoptotic genes Bim and Bax were downregulated. Similarly, flow-sorted lung macrophages upregulated transcript levels of TLR-2, TLR-6, arginase-1, Ym-1, and FIZZ-1 but downregulated nitric oxide synthase-2 levels, signifying their alternative activation. Taken together, we show that the pathogenesis of tropical pulmonary eosinophilia is marked by functional impairment of alveolar macrophages, alternative activation of lung macrophages, and upregulation of anti-apoptotic genes by eosinophils. These events combine together to cause severe lung inflammation and compromised lung immunity. Therapeutic interventions that can boost host immune response in the lungs might thus provide relief to patients with tropical pulmonary eosinophilia.


Assuntos
Eosinófilos/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Eosinofilia Pulmonar/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Arginase/imunologia , Proteína 11 Semelhante a Bcl-2 , Citocinas/imunologia , Eosinófilos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Lectinas/imunologia , Pulmão/patologia , Macrófagos/patologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/imunologia , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Eosinofilia Pulmonar/patologia , Receptor 2 Toll-Like/imunologia , Receptor 6 Toll-Like/imunologia , Proteína X Associada a bcl-2/imunologia , beta-N-Acetil-Hexosaminidases/imunologia
11.
Biochemistry ; 49(36): 7920-9, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20695504

RESUMO

Melittin is a good model antimicrobial peptide to understand the basis of its lytic activities against bacteria and mammalian cells. Novel analogues of melittin were designed by substituting the leucine residue(s) at the "d" and "a" positions of its previously identified leucine zipper motif. A scrambled peptide having the same composition of melittin with altered leucine zipper sequence was also designed. The analogues of melittin including the scrambled peptide showed a drastic reduction in cytotoxicity though they exhibited comparable bactericidal activities. Only melittin but not its analogues localized strongly onto hRBCs and formed pores of approximately 2.2-3.4 nm. However, melittin and its analogues localized similarly onto Escherichia coli and formed pores of varying sizes as tested onto Bacillus megaterium. The data showed that the substitution of hydrophobic leucine residue(s) by lesser hydrophobic alanine residue(s) in the leucine zipper sequence of melittin disturbed its pore-forming activity and mechanism only in hRBCs but not in the tested bacteria.


Assuntos
Antibacterianos/farmacologia , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Meliteno/análogos & derivados , Meliteno/farmacologia , Sequência de Aminoácidos , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Escherichia coli/metabolismo , Hemólise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Zíper de Leucina , Microscopia Confocal , Dados de Sequência Molecular
12.
Biochim Biophys Acta ; 1770(9): 1382-94, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17640809

RESUMO

We examined a hypothesis that reactive oxygen species (ROS) generated by organophosphate compound dichlorvos modulates Hsp70 expression and anti-oxidant defense enzymes and acts as a signaling molecule for apoptosis in the exposed organism. Dichlorvos (0.015-15.0 ppb) without or with inhibitors of Hsp70, superoxide dismutase (SOD) and catalase (CAT) were fed to the third instar larvae of Drosophila melanogaster transgenic for hsp70 (hsp70-lacZ) Bg(9) to examine Hsp70 expression, oxidative stress and apoptotic markers. A concentration- and time-dependent significant increase in ROS generation accompanied by a significant upregulation of Hsp70 preceded changes in antioxidant defense enzyme activities and contents of glutathione, malondialdehyde and protein carbonyl in the treated organisms. An inhibitory effect on SOD and CAT activities significantly upregulated ROS generation and Hsp70 expression in the exposed organism while inhibition of Hsp70 significantly affected oxidative stress markers induced by the test chemical. A comparison made among ROS generation, Hsp70 expression and apoptotic markers showed that ROS generation is positively correlated with Hsp70 expression and apoptotic cell death end points indicating involvement of ROS in the overall adversity caused by the test chemical to the organism. The study suggests that (a) Hsp70 and anti-oxidant enzymes work together for cellular defense against xenobiotic hazard in D. melanogaster and (b) free radicals may modulate Hsp70 expression and apoptosis in the exposed organism.


Assuntos
Diclorvós/farmacologia , Proteínas de Choque Térmico HSP70/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Catalase/metabolismo , Drosophila melanogaster , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Larva/efeitos dos fármacos , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...