Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746339

RESUMO

Lubricin, a lubricating glycoprotein abundant in synovial fluid, forms a low-friction brush polymer interface in tissues exposed to sliding motion including joints, tendon sheaths, and the surface of the eye. Despite its therapeutic potential in diseases such as osteoarthritis and dry eye disease, there are few sources available. Through rational design, we developed a series of recombinant lubricin analogs that utilize the species-specific tissue-binding domains at the N- and C-termini to increase biocompatibility while replacing the central mucin domain with an engineered variant that retains the lubricating properties of native lubricin. In this study, we demonstrate the tissue binding capacity of our engineered lubricin product and its retention in the joint space of rats. Next, we present a new bioprocess chain that utilizes a human-derived cell line to produce O -glycosylation consistent with that of native lubricin and a purification strategy that capitalizes on the positively charged, hydrophobic N- and C-terminal domains. The bioprocess chain is demonstrated at 10 L scale in industry-standard equipment utilizing commonly available ion exchange, hydrophobic interaction and size exclusion chromatography resins. Finally, we confirmed the purity and lubricating properties of the recombinant biolubricant. The biomolecular engineering and bioprocessing strategies presented here are an effective means of lubricin production and could have broad applications to the study of mucins in general.

2.
J Orthop Res ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291343

RESUMO

Inflammation of the synovium, known as synovitis, plays an important role in the pathogenesis of osteoarthritis (OA). Synovitis involves the release of a wide variety of pro-inflammatory mediators in synovial fluid (SF) that damage the articular cartilage extracellular matrix and induce death and apoptosis in chondrocytes. The composition of synovial fluid is dramatically altered by inflammation in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. However, the relationship between key biochemical markers of joint inflammation and mechanical function of SF is not well understood. Here, we demonstrate the application of a novel analytical framework to measure the effective viscosity for SF lubrication of cartilage, which is distinct from conventional rheological viscosity. Notably, in a well-established equine model of synovitis, this effective lubricating viscosity decreased by up to 10,000-fold for synovitis SF compared to a ~4 fold change in conventional viscosity measurements. Further, the effective lubricating viscosity was strongly inversely correlated (r = -0.6 to -0.8) to multiple established biochemical markers of SF inflammation, including white blood cell count, prostaglandin E2 (PGE2 ), and chemokine ligand (CCLs) concentrations, while conventional measurements of viscosity were poorly correlated to these markers. These findings demonstrate the importance of experimental and analytical approaches to characterize functional lubricating properties of synovial fluid and their relationships to soluble biomarkers to better understand the progression of OA.

3.
J Orthop Res ; 41(1): 63-71, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35384042

RESUMO

Intra-articular injections of hyaluronic acid have been a mainstay of osteoarthritis treatment for decades. However, controversy surrounds the mechanism of action and efficacy of this therapy. As such, there has been recent interest in developing synthetic lubricants that lubricate cartilage. Recently, a synthetic 4 wt% polyacrylamide (pAAm) hydrogel was shown to effectively decrease lameness in horses. However, its mechanism of action and ability to lubricate cartilage is unknown. The goal of this study was to characterize the lubricating ability of this hydrogel and determine its efficacy for healthy and degraded cartilage. The study utilized previously established IL-1ß-induced biochemical degradation and mechanical impact injury models to degrade cartilage. The lubricating ability of the hydrogel was then characterized using a custom-built tribometer using a glass counterface and friction was evaluated using the Stribeck framework for articular cartilage. pAAm hydrogel was shown to significantly lower the friction coefficient of cartilage explants from both degradation models (30%-40% reduction in friction relative to controls). A striking finding from this study was the aggregation of the pAAm hydrogel at the articulating surface. The surface aggregation was observed in the histological sections of explants from all treatment groups after tribological evaluation. Using the Stribeck framework, the hydrogel was mapped to higher Sommerfeld numbers and was characterized as a viscous lubricant predominantly in the minimum friction mode. In summary, this study revealed that pAAm hydrogel lubricates native and degraded cartilage explants effectively and may have an affinity for the articulating surface of the cartilage.


Assuntos
Cartilagem , Hidrogéis , Animais , Cartilagem/lesões , Cavalos
4.
Sci Transl Med ; 11(483)2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867322

RESUMO

Multigram drug depot systems for extended drug release could transform our capacity to effectively treat patients across a myriad of diseases. For example, tuberculosis (TB) requires multimonth courses of daily multigram doses for treatment. To address the challenge of prolonged dosing for regimens requiring multigram drug dosing, we developed a gastric resident system delivered through the nasogastric route that was capable of safely encapsulating and releasing grams of antibiotics over a period of weeks. Initial preclinical safety and drug release were demonstrated in a swine model with a panel of TB antibiotics. We anticipate multiple applications in the field of infectious diseases, as well as for other indications where multigram depots could impart meaningful benefits to patients, helping maximize adherence to their medication.


Assuntos
Antituberculosos/uso terapêutico , Sistemas de Liberação de Medicamentos , Estômago/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Antibacterianos/uso terapêutico , Antituberculosos/farmacologia , Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Doxiciclina/uso terapêutico , Sistemas de Liberação de Medicamentos/economia , Liberação Controlada de Fármacos , Humanos , Suínos
5.
ACS Appl Mater Interfaces ; 9(23): 19380-19388, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27712051

RESUMO

Removal of excess amount of hydrogen in a catalytic route is a safety measure to be implemented in fuel cell technologies and in nuclear power plants. Hydrogen and oxygen activation are crucial steps for hydrogen combustion that can be achieved by modifying supports with suitable noble metals. In the present study, Pt- and Pd-substituted Co3O4-ZrO2 (CZ) were synthesized using PEG-assisted sonochemical synthesis. Ionic states of Pt and Pd in CZ supports were analyzed by X-ray photoelectron spectroscopy. Pd and Pt improved H2 and O2 activation extensively, which reduced the temperature of 50% conversion (T50%) to 33 °C compared with the support (CZ). The activation energy of PdCZ catalyst was decreased by more than 2 folds (13.4 ± 1.2 kJ mol-1) compared with CZ (34.3 ± 2.3 kJ mol-1). The effect of oxygen vacancies in the reaction mechanism is found to be insignificant with Pt- and Pd-substituted CZ supports. However, oxygen vacancies play an important role when CZ alone was used as catalyst. The importance of hydrogen and oxygen activation as well as the oxygen vacancies in mechanism was studied by H2-TPD, H2-TPR, and in situ FTIR spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...