Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(5): 3238-3246, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38700999

RESUMO

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues its global spread, the exploration of novel therapeutic and diagnostic strategies is still needed. The virus enters host cells by binding the angiotensin-converting enzyme 2 (ACE2) receptor through the spike protein. Here, we develop an engineered, small, stable, and catalytically inactive version of ACE2, termed miniature ACE2 (mACE2), designed to bind the spike protein with high affinity. Employing a magnetic nanoparticle-based assay, we harnessed the strong binding affinity of mACE2 to develop a sensitive and specific platform for the detection or neutralization of SARS-CoV-2. Our findings highlight the potential of engineered mACE2 as a valuable tool in the fight against SARS-CoV-2. The success of developing such a small reagent based on a piecewise molecular design serves as a proof-of-concept approach for the rapid deployment of such agents to diagnose and fight other viral diseases.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , SARS-CoV-2/genética , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , COVID-19/virologia , COVID-19/diagnóstico , Teste de Materiais , Engenharia de Proteínas , Ligação Proteica , Nanopartículas de Magnetita/química
2.
Sci Adv ; 9(21): eadg1062, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235645

RESUMO

Single-protein-based devices that integrate signal sensing with logical operations to generate functional outputs offer exceptional promise for monitoring and modulating biological systems. Engineering such intelligent nanoscale computing agents is challenging, as it requires the integration of sensor domains into a functional protein via intricate allosteric networks. We incorporate a rapamycin-sensitive sensor (uniRapR) and a blue light-responsive LOV2 domain into human Src kinase, creating a protein device that functions as a noncommutative combinatorial logic circuit. In our design, rapamycin activates Src kinase, causing protein localization to focal adhesions, whereas blue light exerts the reverse effect that inactivates Src translocation. Focal adhesion maturation induced by Src activation reduces cell migration dynamics and shifts cell orientation to align along collagen nanolane fibers. Using this protein device, we reversibly control cell orientation by applying the appropriate input signals, a framework that may be useful in tissue engineering and regenerative medicine.


Assuntos
Adesões Focais , Quinases da Família src , Humanos , Quinases da Família src/metabolismo , Adesões Focais/metabolismo , Movimento Celular , Sirolimo , Adesão Celular
3.
bioRxiv ; 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35611332

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface spike glycoprotein - a major antibody target - is critical for virus entry via engagement of human angiotensin-converting enzyme 2 (ACE2) receptor. Despite successes with existing vaccines and therapies that primarily target the receptor binding domain (RBD) of the spike protein, the susceptibility of RBD to mutations provides escape routes for the SARS-CoV-2 from neutralizing antibodies. On the other hand, structural conservation in the spike protein can be targeted to reduce escape mutations and achieve broad protection. Here, we designed candidate stable immunogens that mimic surface features of selected conserved regions of spike protein through 'epitope grafting,' in which we present the target epitope topology on diverse heterologous scaffolds that can structurally accommodate the spike epitopes. Structural characterization of the epitope-scaffolds showed stark agreement with our computational models and target epitopes. The sera from mice immunized with engineered designs display epitope-scaffolds and spike binding activity. We also demonstrated the utility of the designed epitope-scaffolds in diagnostic applications. Taken all together, our study provides important methodology for targeting the conserved, non-RBD structural motifs of spike protein for SARS-CoV-2 epitope vaccine design and demonstrates the potential utility of 'epitope grafting' in rational vaccine design.

4.
Adv Drug Deliv Rev ; 183: 114142, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150769

RESUMO

Technological revolutions in several fields have pushed the boundaries of vaccine design and provided new avenues for vaccine development. Next-generation vaccine platforms have shown promise in targeting challenging antigens, for which traditional approaches have been ineffective. With advances in protein engineering, structural biology, computational biology and immunology, the structural vaccinology approach, which uses protein structure information to develop immunogens, holds promise for future vaccine design. In this review, we highlight various vaccine development strategies, along with their advantages and limitations. We discuss the rational vaccine design approach, which focuses on structure-based vaccine design. Finally, we discuss antigen engineering using the epitope-scaffold approach, gaps in structural vaccinology, and remaining challenges in vaccine design.


Assuntos
Vacinas , Antígenos , Biologia Computacional , Epitopos , Humanos , Vacinologia
5.
Curr Opin Struct Biol ; 73: 102334, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35180676

RESUMO

Allostery in proteins plays an important role in regulating protein activities and influencing many biological processes such as gene expression, enzyme catalysis, and cell signaling. The process of allostery takes place when a signal detected at a site on a protein is transmitted via a mechanical pathway to a functional site and, thus, influences its activity. The pathway of allosteric communication consists of amino acids that form a network with covalent and non-covalent bonds. By mutating residues in this allosteric network, protein engineers have successfully established novel allosteric pathways to achieve desired properties in the target protein. In this review, we highlight the most recent and state-of-the-art techniques for allosteric communication engineering. We also discuss the challenges that need to be overcome and future directions for engineering protein allostery.


Assuntos
Engenharia de Proteínas , Proteínas , Regulação Alostérica , Sítio Alostérico , Proteínas/química
6.
Adv Funct Mater ; 32(49)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36590650

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface spike glycoprotein - a major antibody target - is critical for virus entry via engagement of human angiotensin-converting enzyme 2 (ACE2) receptor. Despite successes with existing vaccines and therapies that primarily target the receptor binding domain (RBD) of the spike protein, the susceptibility of RBD to mutations provides escape routes for the SARS-CoV-2 from neutralizing antibodies. On the other hand, structural conservation in the spike protein can be targeted to reduce escape mutations and achieve broad protection. Here, we designed candidate stable immunogens that mimic surface features of selected conserved regions of spike protein through 'epitope grafting,' in which we present the target epitope topology on diverse heterologous scaffolds that can structurally accommodate the spike epitopes. Structural characterization of the epitope-scaffolds showed stark agreement with our computational models and target epitopes. The sera from mice immunized with engineered designs display epitope-scaffolds and spike binding activity. We also demonstrated the utility of the designed epitope-scaffolds in diagnostic applications. Taken all together, our study provides important methodology for targeting the conserved, non-RBD structural motifs of spike protein for SARS-CoV-2 epitope vaccine design and demonstrates the potential utility of 'epitope grafting' in rational vaccine design.

7.
Front Immunol ; 13: 1029069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591226

RESUMO

Immunotherapy has emerged as a breakthrough strategy in cancer treatment. mRNA vaccines are an attractive and powerful immunotherapeutic platform against cancer because of their high potency, specificity, versatility, rapid and large-scale development capability, low-cost manufacturing potential, and safety. Recent technological advances in mRNA vaccine design and delivery have accelerated mRNA cancer vaccines' development and clinical application. In this review, we present various cancer vaccine platforms with a focus on nucleic acid vaccines. We discuss rational design and optimization strategies for mRNA cancer vaccine development. We highlight the platforms available for delivery of the mRNA vaccines with a focus on lipid nanoparticles (LNPs) based delivery systems. Finally, we discuss the limitations of mRNA cancer vaccines and future challenges.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Neoplasias/genética , Imunoterapia , RNA Mensageiro , Vacinas de mRNA
8.
Nat Commun ; 12(1): 6615, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785644

RESUMO

Advances in protein design have brought us within reach of developing a nanoscale programming language, in which molecules serve as operands and their conformational states function as logic gates with precise input and output behaviors. Combining these nanoscale computing agents into larger molecules and molecular complexes will allow us to write and execute "code". Here, in an important step toward this goal, we report an engineered, single protein design that is allosterically regulated to function as a 'two-input logic OR gate'. Our system is based on chemo- and optogenetic regulation of focal adhesion kinase. In the engineered FAK, all of FAK domain architecture is retained and key intramolecular interactions between the kinase and the FERM domains are externally controlled through a rapamycin-inducible uniRapR module in the kinase domain and a light-inducible LOV2 module in the FERM domain. Orthogonal regulation of protein function was possible using the chemo- and optogenetic switches. We demonstrate that dynamic FAK activation profoundly increased cell multiaxial complexity in the fibrous extracellular matrix microenvironment and decreased cell motility. This work provides proof-of-principle for fine multimodal control of protein function and paves the way for construction of complex nanoscale computing agents.


Assuntos
Biologia Computacional , Proteínas , Biologia Sintética , Movimento Celular , Fibroblastos , Proteína-Tirosina Quinases de Adesão Focal/química , Proteína-Tirosina Quinases de Adesão Focal/genética , Células HeLa , Humanos , Proteínas/química , Proteínas/genética
9.
Biochem J ; 478(19): 3613-3619, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624071

RESUMO

Methylation of lysine residues plays crucial roles in a wide variety of cell signaling processes. While the biological importance of recognition of methylated histones by reader domains in the cell nucleus is well established, the processes associated with methylation of non-histone proteins, particularly in the cytoplasm of the cell, are not well understood. Here, we describe a search for potential methyllysine readers using a rapid structural motif-mining algorithm Erebus, the PDB database, and knowledge of the methyllysine binding mechanisms.


Assuntos
Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Domínios Proteicos , Algoritmos , Citosol/metabolismo , Bases de Dados de Proteínas , Epigênese Genética , Humanos , Metilação , Modelos Moleculares , Ligação Proteica , Processamento de Proteína Pós-Traducional
10.
NPJ Sci Food ; 5(1): 26, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471114

RESUMO

We describe the design of peptides with properties like thermostability, pH stability, and antibacterial activity against a few bacterial food pathogens. Insights obtained from classical structure-function analysis of natural peptides and their mutants through antimicrobial and enzymatic assays are used to rationally develop a set of peptides. pH and thermostability assays were performed to demonstrate robust antimicrobial activity post-treatment with high temperatures and at wide pH ranges. We have also investigated the mode of action of these hyperstable peptides using membrane permeability assays, electron microscopy, and molecular dynamics simulations. Notably, through mutational studies, we show that these peptides elicit their antibacterial action via both membrane destabilization and inhibition of intracellular trypsin-the two functions attributable to separate peptide segments. Finally, toxicity studies and food preservation assays demonstrate the safety and efficacy of the designed peptides for food preservation. Overall, the study provides a general 'blueprint' for the development of stable antimicrobial peptides (AMPs). Insights obtained from this work may also be combined with combinatorial methods in high-throughput studies for future development of antimicrobials for various applications.

11.
J Phys Chem B ; 125(7): 1806-1814, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33566608

RESUMO

Allosteric regulation in proteins is fundamental to many important biological processes. Allostery has been employed to control protein functions by regulating protein activity. Engineered allosteric regulation allows controlling protein activity in subsecond time scale and has a broad range of applications, from dissecting spatiotemporal dynamics in biochemical cascades to applications in biotechnology and medicine. Here, we review the concept of allostery in proteins and various approaches to identify allosteric sites and pathways. We then provide an overview of strategies and tools used in allosteric protein regulation and their utility in biological applications. We highlight various classes of proteins, where regulation is achieved through allostery. Finally, we analyze the current problems, critical challenges, and future prospective in achieving allosteric regulation in proteins.


Assuntos
Proteínas , Regulação Alostérica , Sítio Alostérico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...