Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 2(10): 808-17, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24018794

RESUMO

Harvesting adipose-derived stromal cells (ASCs) for tissue engineering is frequently done through liposuction. However, several different techniques exist. Although third-generation ultrasound-assisted liposuction has been shown to not have a negative effect on ASCs, the impact of laser-assisted liposuction on the quality and differentiation potential of ASCs has not been studied. Therefore, ASCs were harvested from laser-assisted lipoaspirate and suction-assisted lipoaspirate. Next, in vitro parameters of cell yield, cell viability and proliferation, surface marker phenotype, osteogenic differentiation, and adipogenic differentiation were performed. Finally, in vivo bone formation was assessed using a critical-sized cranial defect in athymic nude mice. Although ASCs isolated from suction-assisted lipoaspirate and laser-assisted lipoaspirate both successfully underwent osteogenic and adipogenic differentiation, the cell yield, viability, proliferation, and frequency of ASCs (CD34(+)CD31(-)CD45(-)) in the stromal vascular fraction were all significantly less with laser-assisted liposuction in vitro (p < .05). In vivo, quantification of osseous healing by micro-computed tomography revealed significantly more healing with ASCs isolated from suction-assisted lipoaspirate relative to laser-assisted lipoaspirate at the 4-, 6-, and 8-week time points (p < .05). Therefore, as laser-assisted liposuction appears to negatively impact the biology of ASCs, cell harvest using suction-assisted liposuction is preferable for tissue-engineering purposes.


Assuntos
Tecido Adiposo/citologia , Lipectomia/métodos , Medicina Regenerativa/métodos , Células Estromais/citologia , Engenharia Tecidual/métodos , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Citometria de Fluxo , Humanos , Lasers , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo
2.
Plast Reconstr Surg ; 128(2): 373-386, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21788829

RESUMO

BACKGROUND: Given the diversity of species from which adipose-derived stromal cells are derived and studied, the authors set out to delineate the differences in the basic cell biology that may exist across species. Briefly, the authors found that significant differences exist with regard to proliferation and osteogenic potentials of adipose-derived stromal cells across species. METHODS: Adipose-derived stromal cells were derived from human, mouse, and canine sources as previously described. Retinoic acid, insulin-like growth factor-1, and bone morphogenetic protein-2 were added to culture medium; proliferation and osteogenic differentiation were assessed by standardized assays. In vivo methods included seeding 150,000 adipose-derived stromal cells on a biomimetic scaffold and analyzing healing by micro-computed tomography and histology. RESULTS: Adipose-derived stromal cells from all species had the capability to undergo osteogenic differentiation. Canine adipose-derived stromal cells were the most proliferative, whereas human adipose-derived stromal cells were the most osteogenic (p < 0.05). Human cells, however, had the most significant osteogenic response to osteogenic media. Retinoic acid stimulated osteogenesis in mouse and canine cells but not in human adipose-derived stromal cells. Insulin-like growth factor-1 enhanced osteogenesis across all species, most notably in human- and canine-derived cells. CONCLUSIONS: Adipose-derived stromal cells derived from human, mouse, and canine all have the capacity to undergo osteogenic differentiation. Canine adipose-derived stromal cells appear to be the most proliferative, whereas human adipose-derived stromal cells appear to be the most osteogenic. Different cytokines and chemicals can be used to modulate this osteogenic response. These results are promising as attempts are made to optimize tissue-engineered bone using adipose-derived stromal cells.


Assuntos
Adipócitos/fisiologia , Diferenciação Celular/fisiologia , Osteoblastos/citologia , Osteogênese/fisiologia , Células Estromais/citologia , Adipócitos/ultraestrutura , Animais , Células Cultivadas , Meios de Cultura/química , Cães , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Engenharia Tecidual/métodos , Microtomografia por Raio-X
3.
PLoS One ; 5(6): e11177, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20567510

RESUMO

BACKGROUND: Human adipose-derived stromal cells (hASCs) represent a multipotent cell stromal cell type with proven capacity to differentiate along an osteogenic lineage. This suggests that they may be used to heal defects of the craniofacial or appendicular skeleton. We sought to substantiate the use of undifferentiated hASCs in the regeneration of a non-healing mouse skeletal defect. METHODOLOGY/PRINCIPAL FINDINGS: Human ASCs were harvested from female lipoaspirate. Critical-sized (4 mm) calvarial defects were created in the parietal bone of adult male nude mice. Defects were either left empty, treated with an apatite coated PLGA scaffold alone, or a scaffold with human ASCs. MicroCT scans were obtained at stratified time points post-injury. Histology, in situ hybridization, and histomorphometry were performed. Near complete healing was observed among hASC engrafted calvarial defects. This was in comparison to control groups that showed little healing (*P<0.01). Human ASCs once engrafted differentiate down an osteogenic lineage, determined by qRT-PCR and histological co-expression assays using GFP labeled cells. ASCs were shown to persist within a defect site for two weeks (shown by sex chromosome analysis and quantified using Luciferase+ ASCs). Finally, rBMP-2 was observed to increase hASC osteogenesis in vitro and osseous healing in vivo. CONCLUSIONS/SIGNIFICANCE: Human ASCs ossify critical sized mouse calvarial defects without the need for pre-differentiation. Recombinant differentiation factors such as BMP-2 may be used to supplement hASC mediated repair. Interestingly, ASC presence gradually dissipates from the calvarial defect site. This study supports the potential translation for ASC use in the treatment of human skeletal defects.


Assuntos
Tecido Adiposo/citologia , Crânio/anormalidades , Células Estromais/citologia , Animais , Proteína Morfogenética Óssea 2/fisiologia , Osso e Ossos/citologia , Diferenciação Celular , Feminino , Humanos , Hibridização In Situ , Masculino , Camundongos , Camundongos Nus , Osteogênese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA