Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 920316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669424

RESUMO

Cisplatin (CDDP) is currently employed for the treatment of several solid tumors, but cellular heterogeneity and the onset of drug resistance dictate that suitable biomarkers of CDDP sensitivity are established. Studies on triple-negative breast cancer (TNBC) have recently confirmed the involvement of gamma-glutamyltransferase 1 (GGT1), whose enzyme activity expressed at the cell surface favors the cellular resupply of antioxidant glutathione (GSH) thus offering cancer cells protection against the prooxidant effects of CDDP. However, an additional well-established mechanism depends on GGT1-mediated matabolism of extracellular GSH. It was in fact shown that glycyl-cysteine - the dipeptide originated by GGT1-mediated GSH metabolism at the cell surface - can promptly form adducts with exogenous CDDP, thus hindering its access to the cell, interactions with DNA and overall cytotoxicity. Both mechanisms: mainainance of intracellular GSH levels plus extracellular CDDP detoxication are likely concurring to determine GGT1-dependent CDDP resistance.

2.
Nanomaterials (Basel) ; 11(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34361127

RESUMO

In the field of nanotechnology, the use of multi-walled carbon nanotubes (MWCNTs) is growing. Pulmonary exposure during their production, use, and handling is raising concerns about their potential adverse health effects. The purpose of this study is to assess how the physical characteristics of MWCNTs, such as diameter and/or length, can play a role in cellular toxicity. Our experimental design is based on the treatment of human bronchial epithelial cells (BEAS-2B) for six weeks with low concentrations (0.125-1 µg/cm2) of MWCNTs having opposite characteristics: NM-403 and Mitsui-7. Following treatment with both MWCNTs, we observed an increase in mitotic abnormalities and micronucleus-positive cells. The cytotoxic effect was delayed in cells treated with NM-403 compared to Mitsui-7. After 4-6 weeks of treatment, a clear cellular morphological change from epithelial to fibroblast-like phenotype was noted, together with a change in the cell population composition. BEAS-2B cells underwent a conversion from the epithelial to mesenchymal state as we observed a decrease in the epithelial marker E-cadherin and an increased expression of mesenchymal markers N-cadherin, Vimentin, and Fibronectin. After four weeks of recovery, we showed that the induced epithelial-mesenchymal transition is reversible, and that the degree of reversibility depends on the MWCNT.

3.
Nanotoxicology ; 11(7): 923-935, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28958182

RESUMO

The increasing use of nanomaterials in numerous domains has led to growing concern about their potential toxicological properties, and the potential risk to human health posed by silica nanoparticles remains under debate. Recent studies proposed that these particles could alter gene expression through the modulation of epigenetic marks, and the possible relationship between particle exposure and these mechanisms could represent a critical factor in carcinogenicity. In this study, using the Bhas 42 cell model, we compare the effects of exposure to two transforming particles, a pyrogenic amorphous silica nanoparticle NM-203 to those of the crystalline silica particle Min-U-Sil® 5. Short-term treatment by Min-U-Sil® 5 decreased global DNA methylation and increased the expression of the two de novo DNMTs, DNMT3a and DNMT3b. NM-203 treatment affected neither the expression of these enzymes nor DNA methylation. Moreover, modified global histone H4 acetylation status and HDAC protein levels were observed only in the Min-U-Sil® 5-treated cells. Finally, both types of particle treatment induced strong c-Myc expression in the early stage of cell transformation and this correlated with enrichment in RNA polymerase II as well as histone active marks on its promoter. Lastly, almost all parameters that were modulated in the early stage were restored in transformed cells suggesting their involvement mainly in the first steps of cell transformation.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Linhagem Celular , Transformação Celular Neoplásica/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Histonas/genética , Humanos , Nanopartículas/química , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Dióxido de Silício/química , Propriedades de Superfície , DNA Metiltransferase 3B
4.
Physiol Genomics ; 48(12): 928-935, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27789735

RESUMO

Perturbations of lipid homeostasis manifest as dyslipidemias and obesity, which are significant risk factors for atherosclerosis and diabetes. Lipoprotein receptors in the liver are key players in the regulation of lipid homeostasis, among which the hepatic lipolysis stimulated lipoprotein receptor, LSR, was recently shown to play an important role in the removal of lipoproteins from the circulation during the postprandial phase. Since heterozygous LSR+/- mice demonstrate moderate dyslipidemia and develop higher body weight gain in response to high-fat diet compared with littermate LSR+/+ controls, we questioned if LSR heterozygosity could affect genes related to hepatic lipid metabolism. A target-specific qPCR array for 84 genes related to lipid metabolism was performed on mRNA isolated from livers of 6 mo old female LSR+/- mice and LSR+/+ littermates following a 6 wk period on a standard (STD) or high-fat diet (60% kcal, HFD). Of the 84 genes studied, 32 were significantly downregulated in STD-LSR+/- mice compared with STD-LSR+/+, a majority of which were PPARα target genes involved in lipid metabolism and transport, and insulin and adipokine-signaling pathways. Of these 32 genes, 80% were also modified in HFD-LSR+/+, suggesting that STD-LSR+/- mice demonstrated a predisposition towards a "high-fat"-like profile, which could reflect dysregulation of liver lipid homeostasis. Since similar profiles of genes were affected by either LSR heterozygosity or by high-fat diet, this would suggest that LSR is a key receptor in regulating hepatic lipid homeostasis, and whose downregulation combined with a Western-type diet may increase predisposition to diet-induced obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Homeostase/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Receptores de Lipoproteínas/genética , Transcriptoma/genética , Animais , Regulação para Baixo/genética , Feminino , Heterozigoto , Insulina/genética , Lipídeos/genética , Camundongos , Obesidade/genética , Aumento de Peso/genética
5.
Nucleic Acids Res ; 39(8): 3388-403, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21183462

RESUMO

Retroviruses require both spliced and unspliced RNAs for replication. Accumulation of Rous Sarcoma virus (RSV) unspliced RNA depends upon the negative regulator of splicing (NRS). Its 5'-part is considered as an ESE binding SR proteins. Its 3'-part contains a decoy 5'-splice site (ss), which inhibits splicing at the bona fide 5'-ss. Only the 3D structure of a small NRS fragment had been experimentally studied. Here, by chemical and enzymatic probing, we determine the 2D structure of the entire RSV NRS. Structural analysis of other avian NRSs and comparison with all sequenced avian NRSs is in favour of a phylogenetic conservation of the NRS 2D structure. By combination of approaches: (i) in vitro and in cellulo splicing assays, (ii) footprinting assays and (iii) purification and analysis of reconstituted RNP complex, we define a small NRS element retaining splicing inhibitory property. We also demonstrate the capability of the SR protein 9G8 to increase NRS activity in vitro and in cellulo. Altogether these data bring new insights on how NRS fine tune splicing activity.


Assuntos
Processamento Alternativo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Viral/química , Proteínas de Ligação a RNA/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Vírus do Sarcoma de Rous/genética , Sequência de Bases , Sítios de Ligação , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Nucleares , Conformação de Ácido Nucleico , RNA Viral/metabolismo , Fatores de Processamento de Serina-Arginina
6.
PLoS Biol ; 8(1): e1000276, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20052282

RESUMO

In placental mammals, inactivation of one of the X chromosomes in female cells ensures sex chromosome dosage compensation. The 17 kb non-coding Xist RNA is crucial to this process and accumulates on the future inactive X chromosome. The most conserved Xist RNA region, the A region, contains eight or nine repeats separated by U-rich spacers. It is implicated in the recruitment of late inactivated X genes to the silencing compartment and likely in the recruitment of complex PRC2. Little is known about the structure of the A region and more generally about Xist RNA structure. Knowledge of its structure is restricted to an NMR study of a single A repeat element. Our study is the first experimental analysis of the structure of the entire A region in solution. By the use of chemical and enzymatic probes and FRET experiments, using oligonucleotides carrying fluorescent dyes, we resolved problems linked to sequence redundancies and established a 2-D structure for the A region that contains two long stem-loop structures each including four repeats. Interactions formed between repeats and between repeats and spacers stabilize these structures. Conservation of the spacer terminal sequences allows formation of such structures in all sequenced Xist RNAs. By combination of RNP affinity chromatography, immunoprecipitation assays, mass spectrometry, and Western blot analysis, we demonstrate that the A region can associate with components of the PRC2 complex in mouse ES cell nuclear extracts. Whilst a single four-repeat motif is able to associate with components of this complex, recruitment of Suz12 is clearly more efficient when the entire A region is present. Our data with their emphasis on the importance of inter-repeat pairing change fundamentally our conception of the 2-D structure of the A region of Xist RNA and support its possible implication in recruitment of the PRC2 complex.


Assuntos
RNA não Traduzido/genética , Proteínas Repressoras/genética , Cromossomo X/genética , Animais , Cromossomos Humanos X/genética , Feminino , Células HeLa , Humanos , Sequências Repetitivas Dispersas/genética , Camundongos , Conformação de Ácido Nucleico , Filogenia , Proteínas do Grupo Polycomb , RNA Longo não Codificante , Inativação do Cromossomo X/genética
7.
Oncol Rep ; 21(2): 283-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19148497

RESUMO

Barrett's esophagus (BE) represents a major risk factor for esophageal adenocarcinoma (AC). For this reason, patients with BE are subjected to a systematic endoscopic surveillance to detect initial evolution towards non-invasive neoplasia (NiN) and cancer, that eventually occurs only in a small fraction of BE patients. This study was aimed to investigate the possible role of glutathione-S-transferase-omega 1 (GSTO1), a recently discovered member of the glutathione-S-transferase family, as a progression marker in the Barrett's disease in order to improve the diagnosis of NiN in BE and to understand the mechanisms of the progression from BE to AC. We investigated the expression and subcellular localization of GSTO1 in biopsies from patients with BE and in human cancer cell lines subjected to heath shock treatment. A selective nuclear localisation of GSTO1 was found in 16/16 biopsies with low- or high-grade NiN, while it appeared in only 4/22 BE biopsies without signs of NiN (P<0.0001). Among biopsies of BE without NiN, diffuse (nuclear and cytoplasmic) staining was found in 5/22 cases, while selective cytoplasmic localisation was found in 13/22. The 6 cases with indefinite grade of NiN were equally divided between nuclear, cytoplasmic and diffuse staining (2 each, respectively). Experiments in vitro showed that in human HeLa cancer cells, GSTO1 translocates into the nucleus as a consequence of heath shock. These findings suggested that the nuclear translocation of glutathione-S-transferase-omega 1 could be involved in the stress response of human cells playing a role in the cancer progression of Barrett's esophagus. Its immunohistochemical detection could represent a useful tool in the grading of Barrett's disease.


Assuntos
Esôfago de Barrett/metabolismo , Biomarcadores Tumorais/metabolismo , Glutationa Transferase/metabolismo , Lesões Pré-Cancerosas/metabolismo , Transporte Proteico/fisiologia , Esôfago de Barrett/patologia , Western Blotting , Núcleo Celular/metabolismo , Progressão da Doença , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Imunofluorescência , Células HeLa , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/patologia
8.
Biochem Pharmacol ; 77(3): 397-411, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18996094

RESUMO

Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions.


Assuntos
NF-kappa B/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , gama-Glutamiltransferase/metabolismo , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Primers do DNA , Humanos , Mutagênese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Biophys Chem ; 119(2): 158-69, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16139946

RESUMO

Three recombinant apoE isoforms fused with an amino-terminal extension of 43 amino acids were produced in a heterologous expression system in E. coli. Their state of association in aqueous phase was analyzed by size-exclusion liquid chromatography, sedimentation velocity and sedimentation equilibrium experiments. By liquid chromatography, all three isoforms consisted of three major species with Stokes radii of 4.0, 5.0 and 6.6 nm. Sedimentation velocity confirmed the presence of monomers, dimers and tetramers as major species of each isoform. The association schemes established by sedimentation equilibrium experiments corresponded to monomer-dimer-tetramer-octamer for apoE2, monomer-dimer-tetramer for apoE3 and monomer-dimer-tetramer-octamer for apoE4. Each of the three isoforms exhibits a distinct self-association pattern. The apolipoprotein multi-domain structure was mapped by limited proteolysis with trypsin, chymotrypsin, elastase, subtilisin and Staphylococcus aureus V8 protease. All five enzymes produced stable intermediates during the degradation of the three apoE isoforms, as described for plasma apoE3. The recombinant apoE isoforms, thus, consist of N- and C-terminal domains. The presence of the fusion peptide did not appear to alter the apolipoprotein tertiary organization. However, a 30 kDa amino-terminal fragment appeared during the degradation of the recombinant apoE isoforms resulting from cleavage in the 273-278 region. This region, not accessible in plasma apoE3, results from a different conformation of the C-terminal domain in the recombinant isoforms. A specific pattern for the apoE4 C-terminal domain was observed during the proteolysis. The region 230-260 in apoE4, in contrast to that of apoE3 and apoE2, was not accessible to proteases, probably due to the existence of a longer helix in this region of apoE4 stabilized by an interdomain interaction.


Assuntos
Apolipoproteínas E/química , Apolipoproteína E2 , Apolipoproteína E3 , Apolipoproteína E4 , Fenômenos Químicos , Físico-Química , Cromatografia em Gel/métodos , Enzimas/química , Humanos , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sensibilidade e Especificidade , Soluções/química
10.
Biophys Chem ; 119(2): 170-85, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16125836

RESUMO

The stabilities toward thermal and chemical denaturation of three recombinant isoforms of human apolipoprotein E (r-apoE2, r-apoE3 and r-apoE4), human plasma apoE3, the recombinant amino-terminal (NT) and the carboxyl-terminal (CT) domains of plasma apoE3 at pH 7 were studied using near and far ultraviolet circular dichroism (UV CD), fluorescence and size-exclusion chromatography. By far UV CD, thermal unfolding was irreversible for the intact apoE isoforms and consisted of a single transition. The r-apoE3 was found to be less stable as compared to the plasma protein and the stability of recombinant isoforms was r-apoE4

Assuntos
Apolipoproteínas E/química , Apolipoproteína E2 , Apolipoproteína E3 , Apolipoproteína E4 , Apolipoproteínas E/isolamento & purificação , Cromatografia em Gel/métodos , Dicroísmo Circular , Guanidina/química , Humanos , Tamanho da Partícula , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sensibilidade e Especificidade , Soluções/química , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta , Temperatura
11.
Biochem Biophys Res Commun ; 313(2): 300-7, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14684160

RESUMO

In the present study the molecular mechanisms underlying tetradecanoylphorbol-13-acetate (TPA) mediated regulation of the human gamma-glutamyltransferase (GGT) gene were examined. TPA challenge of HeLa cells resulted in an increase of GGT mRNA and enzyme activity. Deletion analysis of the promoter revealed that the -348 to +60 fragment was able to mediate TPA induced expression. Gel shift and supershift analyses showed that TPA treatment increased nuclear protein binding to a putative AP-1 site (-225 to -214) and that c-Jun was part of the complex. This AP-1 element, when cloned either in its native arrangement or as tandem repeat 5' of the minimal thymidine kinase promoter, mediated a significant increase of luciferase activity after TPA treatment of transfected HeLa cells, while its mutated counterpart abolished the induction. The same AP-1 element was able to mediate TPA induced expression in HepG2 cells. Collectively these results indicate that like other GSH metabolising enzymes, GGT too is a target for AP-1 mediated regulation.


Assuntos
Regiões Promotoras Genéticas/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , gama-Glutamiltransferase/genética , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos/genética , Indução Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Células HeLa , Humanos , Luciferases/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/biossíntese , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transfecção , gama-Glutamiltransferase/metabolismo
12.
Tumori ; 89(4): 426-33, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14606649

RESUMO

AIMS AND BACKGROUND: The transcription factor NF-kappaB is implicated in the expression of genes involved in cell proliferation, apoptosis and metastasis. In melanoma, high constitutive levels of NF-kappaB activation are usually observed. NF-kappaB is regulated by oxidation/reduction (redox) processes, and the occurrence of constitutive oxidative stress in melanoma cells has been documented. Recent studies of our laboratories showed that the membrane-bound gamma-glutamyl transferase (GGT) enzyme activity--expressed by a number of malignancies, including melanoma--can act as a basal source of superoxide, hydrogen peroxide and other prooxidants. METHODS: In the present study we utilized the 2/60 clone of Me665/2 human metastatic melanoma, which displays high levels of GGT activity, in order to verify if the presence of this enzyme--through the promotion of redox processes--may influence the activation status of NF-kappaB. The latter was evaluated by determining the nuclear translocation of the p65 subunit (by immunoblot), the DNA binding of NF-kappaB (by electrophoretic mobility shift assay) and its transcriptional activity (by gene transactivation studies). RESULTS: Me665/2/60 cells displayed a basal production of hydrogen peroxide. Stimulation of GGT activity by its substrates glutathione and glycyl-glycine caused additional production of hydrogen peroxide, up to levels approx. double the basal levels. Nuclear translocation of the NF-kappaB p65 subunit, DNA-binding and gene transactivation were thus investigated in Me665/2/60 cells whose GGT activity was modulated by means of substrates or inhibitors. Stimulation of GGT activity resulted in increased nuclear translocation of p65, while on the other hand NF-kappaB DNA binding and gene transactivation were paradoxically decreased. NF-kappaB DNA binding could be restored by treating cell lysates with the thiol-reducing agent dithiothreitol (DTT). Treatment of cells with exogenous hydrogen peroxide did not affect NF-kappaB activation status. CONCLUSIONS: Altogether, the data obtained indicate that GGT activity may impair the redox status of thiols that is critical for NF-kappaB DNA binding and gene transactivation, through the production of prooxidant species allegedly distinct from hydrogen peroxide. GGT activity therefore appears to be an additional factor in modulation of NF-kappaB transcriptional activity in melanoma, capable of hindering NF-kappaB DNA binding even in conditions where continuous oxidative stress would favor NF-kappaB nuclear translocation.


Assuntos
DNA de Neoplasias/metabolismo , Melanoma/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Translocação Genética , gama-Glutamiltransferase/metabolismo , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Peróxido de Hidrogênio/metabolismo , Luciferases/metabolismo , Melanoma/enzimologia , Melanoma/genética , Oxirredução
13.
Biochem Pharmacol ; 66(8): 1499-503, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-14555227

RESUMO

Glutathione (GSH) has been described for a long time just as a defensive reagent against the action of toxic xenobiotics (drugs, pollutants, carcinogens). As a prototype antioxidant, it has been involved in cell protection from the noxious effect of excess oxidant stress, both directly and as a cofactor of glutathione peroxidases. In addition, it has long been known that GSH is capable of forming disulfide bonds with cysteine residues of proteins, and the relevance of this mechanism ("S-glutathionylation") in regulation of protein function is currently receiving confirmation in a series of research lines. Rather paradoxically, however, recent studies have also highlighted the ability of GSH-and notably of its catabolites-to promote oxidative processes, by participating in metal ion-mediated reactions eventually leading to formation of reactive oxygen species and free radicals. A crucial role in these phenomena is played by membrane bound gamma-glutamyltransferase activity. The significance of GSH as a major factor in regulation of cell life, proliferation, and death, should be regarded as the integrated result of all these roles it can play.


Assuntos
Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Animais , Humanos , Metais/metabolismo , Compostos de Sulfidrila/metabolismo
14.
Biochem Pharmacol ; 66(4): 595-604, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12906924

RESUMO

In this work, we investigated the effect of gamma-glutamyltransferase (GGT) overexpression on cell viability after carboplatin treatment and compared with cisplatin. Carboplatin challenge of HeLa cells induced GGT and glutamate-cystine ligase (GCL) activities by 2- and 1.4-fold, respectively and concomitantly increased the intracellular reduced glutathione (GSH) level (1.5-fold). To study the role of GGT, HeLa-GGT cells, a stably transfected cell line overexpressing GGT (120-150 mU/mg protein) and the parental HeLa cells (10-15 mU/mg protein) were used. Both cell lines exhibited comparable viability (IC(50) approximately 150 microM) after carboplatin treatment when cultured in standard (250 microM cystine) medium. Culture in low (50 microM) cystine medium resulted in a dramatic decrease (approximately 90%) of the intracellular GSH level and to a 2.5-fold increase of carboplatin cytotoxicity (IC(50) approximately 60 microM). When GSH (50 microM) was included in the culture medium, only HeLa-GGT cells exhibited increased resistance to carboplatin. Using partially purified GGT from HeLa-GGT cells, we show that cisplatin forms adducts with cysteinylglycine, depending only on GGT activity whereas carboplatin did not efficiently react with cysteinylglycine. Thus, in this model system, GGT activity can affect platinum drugs cytotoxocity by two different ways: cisplatin can be detoxified extracellularly after reaction with the -SH group of cysteinylglycine; in the case of carboplatin, the supply of GSH precursors, initiated by GGT, increases the intracellular level of the tripeptide and provides enhanced defensive mechanisms to the cell.


Assuntos
Antineoplásicos/farmacologia , Carboplatina/farmacologia , Cisplatino/farmacologia , gama-Glutamiltransferase/fisiologia , Carboplatina/metabolismo , Cisplatino/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glutamato-Cisteína Ligase/metabolismo , Glutationa/análise , Células HeLa , Humanos
15.
Biochim Biophys Acta ; 1622(2): 133-44, 2003 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-12880951

RESUMO

Rodent cells, widely used for the industrial production of recombinant human glycoproteins, possess CMP-N-acetylneuraminic acid hydroxylase (CMP-Neu5Ac hydroxylase; EC 1.14.13.45) which is the key enzyme in the formation of the sialic acid, N-glycolylneuraminic acid (Neu5Gc). This enzyme is not expressed in an active form in man and evidence suggests that the presence of Neu5Gc in recombinant therapeutic glycoproteins may elicit an immune response. The aim of this work was, therefore, to reduce CMP-Neu5Ac hydroxylase activity in a Chinese Hamster Ovary (CHO) cell line, and thus the Neu5Gc content of the resulting glycoconjugates, using a rational antisense RNA approach. For this purpose, the cDNA of the hamster hydroxylase was partially cloned and sequenced. Based on the sequence of the mouse and hamster cDNAs, optimal antisense RNA fragments were selected from preliminary in vitro translation tests. Compared to the parental cell line, the new strain (CHO-AsUH2), which was transfected with a 199-bp antisense fragment derived from the mouse CMP-Neu5Ac hydroxylase cDNA, showed an 80% reduction in hydroxylase activity. An analysis of the sialic acids present in the cells' own glycoconjugates revealed a decrease in the percentage of Neu5Gc residues from 4% in the parental cells to less than 1% in the CHO-AsUH2 cell line.


Assuntos
Células CHO/metabolismo , Oxigenases de Função Mista/genética , Animais , Sequência de Bases , Células CHO/enzimologia , Divisão Celular , Clonagem Molecular , Cricetinae , DNA Complementar/biossíntese , Fatores de Iniciação em Eucariotos , Glicoconjugados/química , Glicoconjugados/metabolismo , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Ácidos Neuramínicos/análise , Ácidos Neuramínicos/metabolismo , Reação em Cadeia da Polimerase , Engenharia de Proteínas , RNA Antissenso , RNA Mensageiro/análise , Alinhamento de Sequência , Fatores de Tempo
16.
Biochim Biophys Acta ; 1648(1-2): 210-8, 2003 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12758164

RESUMO

The enzyme gamma-glutamyltransferase (GGT) is frequently overexpressed in cancer cells and tissues and has significant utility as a cancer marker. Significant heterogeneity of the enzyme has been described due to both transcriptional and post-translational variations. For possible use in diagnosis and follow-up of patients with colorectal cancer, a search was performed for specific mRNA subtypes and glycan structures of the enzyme in liver metastases. We found no differences in the distribution of three GGT mRNA subtypes (fetal liver, HepG2, placenta) in metastatic tissue and normal liver tissue. Furthermore, the three subtypes were present in leukocytes isolated from both normal individuals and cancer patients. Two colon carcinoma cell lines (Colo 205 and HCC 2998) also displayed the three forms and no consistent changes in mRNA composition were noted after butyrate-induced differentiation of the cells. Thus, neither of the GGT mRNA subforms appear to be tumor-specific, although some qualitative and quantitative variations were noted. Two distinct glycosylation features were detected for GGT in metastatic tissue in contrast to normal liver GGT; an extreme sialic acid heterogeneity and a significant increase in beta1,6GlcNAc branching. The GGT glycans from the two colon carcinoma cell lines also possessed these features. As butyrate treatment of the cells resulted in an increased sialic acid content and a reduced beta1,6GlcNAc branching, the described carbohydrate structures appear to be part of a tumor-related pattern. We were, however, unable to identify such GGT isoforms in serum from patients with advanced colorectal cancer. This indicates that their usefulness in diagnostic use is doubtful.


Assuntos
Neoplasias do Colo/genética , Heterogeneidade Genética , Neoplasias Hepáticas/genética , Polissacarídeos/metabolismo , gama-Glutamiltransferase/genética , Butiratos/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Leucócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Polissacarídeos/genética , RNA Mensageiro/biossíntese , gama-Glutamiltransferase/biossíntese
17.
Clin Chem Lab Med ; 41(2): 169-76, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12667003

RESUMO

There is a lack of certified reference material (CRM) for lipase catalytic activity. Consequently between-method comparability is very poor. The aim of this study was to produce two lipase CRMs, one from human pancreatic juice (BCR 693), and another using recombinant technologies (BCR 694). Lipase was purified from pancreatic juice, using column chromatography and isoelectric focusing. Recombinant lipase was produced with a transfected cell line and purified with column chromatography. Adding buffered bovine serum albumin and subsequent freeze-drying were used to stabilize both materials. A standardized titrimetric method was employed to compare their catalytic properties to those of two plasma pools of patients suffering from acute pancreatitis. About 5 kU (titrimetry, 37 degrees C) of each material were obtained. They were lyophilized without apparent modifications of their catalytic properties, which stayed identical to those exhibited by the enzyme present in patient's pools. Stability of both materials was estimated at several years when stored in a dry form at -20 degrees C. Both materials appear to have similar catalytic properties and stability and were found commutable as regards a reference method and a routine measurement procedure. An international certification campaign will be carried out to assign values to BCR 693 and BCR 694.


Assuntos
Lipase/química , Pâncreas/enzimologia , Pâncreas/metabolismo , Animais , Catálise , Congelamento , Técnicas de Transferência de Genes , Humanos , Focalização Isoelétrica , Metabolismo dos Lipídeos , Proteínas Recombinantes/química , Valores de Referência , Manejo de Espécimes , Suínos , Temperatura , Fatores de Tempo , Transfecção
18.
Biochem Pharmacol ; 64(2): 207-16, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12123741

RESUMO

Gamma-glutamyltransferase (GGT), which is a key enzyme for the cellular glutathione (GSH) homeostasis, was shown to be overexpressed in human tumor cells selected for resistance to cisplatin and to influence the resistance of experimental tumors in vivo. We first established that cisplatin treatment of HeLa cells was accompanied by an early 3-fold induction of GGT synthesis, enhancing the possibility that this enzyme plays an important role in the cell defenses against this anticancer drug. This role was then studied using a GGT-transfected HeLa cell line (HeLa-GGT) exhibiting 10 times the activity of the parental HeLa cells (120-150 and 10-14 mU/mg protein, respectively). Both cell lines showed comparable intracellular GSH levels and cisplatin resistance when cultured in high (250 microM) or low (50 microM) cysteine-containing medium. When 50 microM of GSH were included in the low-cysteine culture medium only HeLa-GGT cells partially recovered their intracellular GSH and exhibited an increased resistance to cisplatin. Cisplatin treatment also inhibited GGT-dependent production of reactive oxygen species, a process depending on the availability of cysteinylglycine produced during GSH catabolism. Furthermore, we showed that cisplatin forms adducts with cysteinylglycine 10 times more rapidly than with GSH, and that these adducts were formed only in the extracellular medium of HeLa GGT cells. This extracellular mechanism could at least partially account for the increased resistance of GGT-rich cells to cisplatin.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , gama-Glutamiltransferase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Células HeLa , Humanos , Espécies Reativas de Oxigênio/metabolismo
19.
Biochem Pharmacol ; 64(2): 307-15, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12123752

RESUMO

The single-copy gene for rat gamma-glutamyltransferase (GGT) encodes at least seven distinct mRNAs that differ in their 5'-untranslated regions only. Tissue- and developmental-specific expression of GGT is partly achieved by the presence of many transcription factor-binding sites in the promoters of this gene. In an earlier study we found that GGT mRNAs II and IV levels were increased upon butyrate-induced differentiation of the rat colon carcinoma cell line CC531. The mechanism for this butyrate-induced upregulation remains unknown, but may result from altered promoter activity as butyrate is a known histone deacetylase inhibitor. In the present study, we show by transient transfection studies that butyrate enhanced the expression of the luciferase reporter gene driven by the rat GGT promoter 2 (P2). Trichostatine A (TSA), another histone deacetylase inhibitor, also enhanced transcription from this promoter. The role of the transcription factor site Sp1 in butyrate- or TSA-induced activation of the GGT P2 was examined as Sp1 has been previously shown to play a central role in the transcriptional activation of other genes during butyrate and TSA stimulation. A triple sequence-motif of this isolated Sp1 site linked to a minimal promoter was able to mediate butyrate- and TSA-induced expression of the luciferase reporter gene, while no effect was measured using the minimal promoter alone. Deleting the Sp1 site in the context of the rat GGT P2 strongly reduced the basal transcription activity and abrogated butyrate- and TSA-induced activation of the mutated promoter. These results suggest that butyrate- or TSA-induced activation of the rat GGT P2 can be mediated by a Sp1 binding motif.


Assuntos
Butiratos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , gama-Glutamiltransferase/metabolismo , Animais , Sequência de Bases , Neoplasias do Colo/patologia , DNA/análise , Ativação Enzimática , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Fator de Transcrição Sp1/metabolismo , Células Tumorais Cultivadas , gama-Glutamiltransferase/genética
20.
Chem Biol Interact ; 140(1): 49-65, 2002 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-12044560

RESUMO

An assay of gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in crude extracts of cultured cells and tissues is described. It represents a novel combination of known methods, and is based on the formation of glutathione (GSH) from cysteine, glutamate and glycine in the presence of rat kidney GS for the assay of gamma-GCS, or from gamma-glutamylcysteine and glycine for the assay of GS. GSH is then quantified by the Tietze recycling method. Assay mixtures contain the gamma-glutamyl transpeptidase (GGT) inhibitor acivicin in order to prevent the degradation of gamma-glutamylcysteine and of the accumulating GSH, and dithiothreitol in order to prevent the oxidation of cysteine and gamma-glutamylcysteine. gamma-GCS and GS levels determined by this method are comparable to those determined by others. The method is suitable for the rapid determination of gamma-GCS GS in GGT-containing tissues and for the studies of induction of gamma-GCS and GS in tissue cultures.


Assuntos
Células 3T3/enzimologia , Aminoaciltransferases/análise , Glutationa Sintase/análise , Rim/enzimologia , Fígado/enzimologia , Animais , Camundongos , Ratos , Ratos Sprague-Dawley , Espectrofotometria/métodos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA