Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Online J Public Health Inform ; 16: e53445, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700929

RESUMO

BACKGROUND: Post-COVID-19 condition (colloquially known as "long COVID-19") characterized as postacute sequelae of SARS-CoV-2 has no universal clinical case definition. Recent efforts have focused on understanding long COVID-19 symptoms, and electronic health record (EHR) data provide a unique resource for understanding this condition. The introduction of the International Classification of Diseases, Tenth Revision (ICD-10) code U09.9 for "Post COVID-19 condition, unspecified" to identify patients with long COVID-19 has provided a method of evaluating this condition in EHRs; however, the accuracy of this code is unclear. OBJECTIVE: This study aimed to characterize the utility and accuracy of the U09.9 code across 3 health care systems-the Veterans Health Administration, the Beth Israel Deaconess Medical Center, and the University of Pittsburgh Medical Center-against patients identified with long COVID-19 via a chart review by operationalizing the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC) definitions. METHODS: Patients who were COVID-19 positive with either a U07.1 ICD-10 code or positive polymerase chain reaction test within these health care systems were identified for chart review. Among this cohort, we sampled patients based on two approaches: (1) with a U09.9 code and (2) without a U09.9 code but with a new onset long COVID-19-related ICD-10 code, which allows us to assess the sensitivity of the U09.9 code. To operationalize the long COVID-19 definition based on health agency guidelines, symptoms were grouped into a "core" cluster of 11 commonly reported symptoms among patients with long COVID-19 and an extended cluster that captured all other symptoms by disease domain. Patients having ≥2 symptoms persisting for ≥60 days that were new onset after their COVID-19 infection, with ≥1 symptom in the core cluster, were labeled as having long COVID-19 per chart review. The code's performance was compared across 3 health care systems and across different time periods of the pandemic. RESULTS: Overall, 900 patient charts were reviewed across 3 health care systems. The prevalence of long COVID-19 among the cohort with the U09.9 ICD-10 code based on the operationalized WHO definition was between 23.2% and 62.4% across these health care systems. We also evaluated a less stringent version of the WHO definition and the CDC definition and observed an increase in the prevalence of long COVID-19 at all 3 health care systems. CONCLUSIONS: This is one of the first studies to evaluate the U09.9 code against a clinical case definition for long COVID-19, as well as the first to apply this definition to EHR data using a chart review approach on a nationwide cohort across multiple health care systems. This chart review approach can be implemented at other EHR systems to further evaluate the utility and performance of the U09.9 code.

2.
medRxiv ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38699316

RESUMO

Scalable identification of patients with the post-acute sequelae of COVID-19 (PASC) is challenging due to a lack of reproducible precision phenotyping algorithms and the suboptimal accuracy, demographic biases, and underestimation of the PASC diagnosis code (ICD-10 U09.9). In a retrospective case-control study, we developed a precision phenotyping algorithm for identifying research cohorts of PASC patients, defined as a diagnosis of exclusion. We used longitudinal electronic health records (EHR) data from over 295 thousand patients from 14 hospitals and 20 community health centers in Massachusetts. The algorithm employs an attention mechanism to exclude sequelae that prior conditions can explain. We performed independent chart reviews to tune and validate our precision phenotyping algorithm. Our PASC phenotyping algorithm improves precision and prevalence estimation and reduces bias in identifying Long COVID patients compared to the U09.9 diagnosis code. Our algorithm identified a PASC research cohort of over 24 thousand patients (compared to about 6 thousand when using the U09.9 diagnosis code), with a 79.9 percent precision (compared to 77.8 percent from the U09.9 diagnosis code). Our estimated prevalence of PASC was 22.8 percent, which is close to the national estimates for the region. We also provide an in-depth analysis outlining the clinical attributes, encompassing identified lingering effects by organ, comorbidity profiles, and temporal differences in the risk of PASC. The PASC phenotyping method presented in this study boasts superior precision, accurately gauges the prevalence of PASC without underestimating it, and exhibits less bias in pinpointing Long COVID patients. The PASC cohort derived from our algorithm will serve as a springboard for delving into Long COVID's genetic, metabolomic, and clinical intricacies, surmounting the constraints of recent PASC cohort studies, which were hampered by their limited size and available outcome data.

3.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585746

RESUMO

Objective: Statistical and artificial intelligence algorithms are increasingly being developed for use in healthcare. These algorithms may reflect biases that magnify disparities in clinical care, and there is a growing need for understanding how algorithmic biases can be mitigated in pursuit of algorithmic fairness. Individual fairness in algorithms constrains algorithms to the notion that "similar individuals should be treated similarly." We conducted a scoping review on algorithmic individual fairness to understand the current state of research in the metrics and methods developed to achieve individual fairness and its applications in healthcare. Methods: We searched three databases, PubMed, ACM Digital Library, and IEEE Xplore, for algorithmic individual fairness metrics, algorithmic bias mitigation, and healthcare applications. Our search was restricted to articles published between January 2013 and September 2023. We identified 1,886 articles through database searches and manually identified one article from which we included 30 articles in the review. Data from the selected articles were extracted, and the findings were synthesized. Results: Based on the 30 articles in the review, we identified several themes, including philosophical underpinnings of fairness, individual fairness metrics, mitigation methods for achieving individual fairness, implications of achieving individual fairness on group fairness and vice versa, fairness metrics that combined individual fairness and group fairness, software for measuring and optimizing individual fairness, and applications of individual fairness in healthcare. Conclusion: While there has been significant work on algorithmic individual fairness in recent years, the definition, use, and study of individual fairness remain in their infancy, especially in healthcare. Future research is needed to apply and evaluate individual fairness in healthcare comprehensively.

4.
JMIR Med Inform ; 12: e55318, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587879

RESUMO

BACKGROUND: Large language models (LLMs) have shown remarkable capabilities in natural language processing (NLP), especially in domains where labeled data are scarce or expensive, such as the clinical domain. However, to unlock the clinical knowledge hidden in these LLMs, we need to design effective prompts that can guide them to perform specific clinical NLP tasks without any task-specific training data. This is known as in-context learning, which is an art and science that requires understanding the strengths and weaknesses of different LLMs and prompt engineering approaches. OBJECTIVE: The objective of this study is to assess the effectiveness of various prompt engineering techniques, including 2 newly introduced types-heuristic and ensemble prompts, for zero-shot and few-shot clinical information extraction using pretrained language models. METHODS: This comprehensive experimental study evaluated different prompt types (simple prefix, simple cloze, chain of thought, anticipatory, heuristic, and ensemble) across 5 clinical NLP tasks: clinical sense disambiguation, biomedical evidence extraction, coreference resolution, medication status extraction, and medication attribute extraction. The performance of these prompts was assessed using 3 state-of-the-art language models: GPT-3.5 (OpenAI), Gemini (Google), and LLaMA-2 (Meta). The study contrasted zero-shot with few-shot prompting and explored the effectiveness of ensemble approaches. RESULTS: The study revealed that task-specific prompt tailoring is vital for the high performance of LLMs for zero-shot clinical NLP. In clinical sense disambiguation, GPT-3.5 achieved an accuracy of 0.96 with heuristic prompts and 0.94 in biomedical evidence extraction. Heuristic prompts, alongside chain of thought prompts, were highly effective across tasks. Few-shot prompting improved performance in complex scenarios, and ensemble approaches capitalized on multiple prompt strengths. GPT-3.5 consistently outperformed Gemini and LLaMA-2 across tasks and prompt types. CONCLUSIONS: This study provides a rigorous evaluation of prompt engineering methodologies and introduces innovative techniques for clinical information extraction, demonstrating the potential of in-context learning in the clinical domain. These findings offer clear guidelines for future prompt-based clinical NLP research, facilitating engagement by non-NLP experts in clinical NLP advancements. To the best of our knowledge, this is one of the first works on the empirical evaluation of different prompt engineering approaches for clinical NLP in this era of generative artificial intelligence, and we hope that it will inspire and inform future research in this area.

5.
PLOS Digit Health ; 3(4): e0000484, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620037

RESUMO

Few studies examining the patient outcomes of concurrent neurological manifestations during acute COVID-19 leveraged multinational cohorts of adults and children or distinguished between central and peripheral nervous system (CNS vs. PNS) involvement. Using a federated multinational network in which local clinicians and informatics experts curated the electronic health records data, we evaluated the risk of prolonged hospitalization and mortality in hospitalized COVID-19 patients from 21 healthcare systems across 7 countries. For adults, we used a federated learning approach whereby we ran Cox proportional hazard models locally at each healthcare system and performed a meta-analysis on the aggregated results to estimate the overall risk of adverse outcomes across our geographically diverse populations. For children, we reported descriptive statistics separately due to their low frequency of neurological involvement and poor outcomes. Among the 106,229 hospitalized COVID-19 patients (104,031 patients ≥18 years; 2,198 patients <18 years, January 2020-October 2021), 15,101 (14%) had at least one CNS diagnosis, while 2,788 (3%) had at least one PNS diagnosis. After controlling for demographics and pre-existing conditions, adults with CNS involvement had longer hospital stay (11 versus 6 days) and greater risk of (Hazard Ratio = 1.78) and faster time to death (12 versus 24 days) than patients with no neurological condition (NNC) during acute COVID-19 hospitalization. Adults with PNS involvement also had longer hospital stay but lower risk of mortality than the NNC group. Although children had a low frequency of neurological involvement during COVID-19 hospitalization, a substantially higher proportion of children with CNS involvement died compared to those with NNC (6% vs 1%). Overall, patients with concurrent CNS manifestation during acute COVID-19 hospitalization faced greater risks for adverse clinical outcomes than patients without any neurological diagnosis. Our global informatics framework using a federated approach (versus a centralized data collection approach) has utility for clinical discovery beyond COVID-19.

6.
JMIR Med Inform ; 12: e52289, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568736

RESUMO

BACKGROUND: The rehabilitation of a patient who had a stroke requires precise, personalized treatment plans. Natural language processing (NLP) offers the potential to extract valuable exercise information from clinical notes, aiding in the development of more effective rehabilitation strategies. OBJECTIVE: This study aims to develop and evaluate a variety of NLP algorithms to extract and categorize physical rehabilitation exercise information from the clinical notes of patients who had a stroke treated at the University of Pittsburgh Medical Center. METHODS: A cohort of 13,605 patients diagnosed with stroke was identified, and their clinical notes containing rehabilitation therapy notes were retrieved. A comprehensive clinical ontology was created to represent various aspects of physical rehabilitation exercises. State-of-the-art NLP algorithms were then developed and compared, including rule-based, machine learning-based algorithms (support vector machine, logistic regression, gradient boosting, and AdaBoost) and large language model (LLM)-based algorithms (ChatGPT [OpenAI]). The study focused on key performance metrics, particularly F1-scores, to evaluate algorithm effectiveness. RESULTS: The analysis was conducted on a data set comprising 23,724 notes with detailed demographic and clinical characteristics. The rule-based NLP algorithm demonstrated superior performance in most areas, particularly in detecting the "Right Side" location with an F1-score of 0.975, outperforming gradient boosting by 0.063. Gradient boosting excelled in "Lower Extremity" location detection (F1-score: 0.978), surpassing rule-based NLP by 0.023. It also showed notable performance in the "Passive Range of Motion" detection with an F1-score of 0.970, a 0.032 improvement over rule-based NLP. The rule-based algorithm efficiently handled "Duration," "Sets," and "Reps" with F1-scores up to 0.65. LLM-based NLP, particularly ChatGPT with few-shot prompts, achieved high recall but generally lower precision and F1-scores. However, it notably excelled in "Backward Plane" motion detection, achieving an F1-score of 0.846, surpassing the rule-based algorithm's 0.720. CONCLUSIONS: The study successfully developed and evaluated multiple NLP algorithms, revealing the strengths and weaknesses of each in extracting physical rehabilitation exercise information from clinical notes. The detailed ontology and the robust performance of the rule-based and gradient boosting algorithms demonstrate significant potential for enhancing precision rehabilitation. These findings contribute to the ongoing efforts to integrate advanced NLP techniques into health care, moving toward predictive models that can recommend personalized rehabilitation treatments for optimal patient outcomes.

7.
J Healthc Inform Res ; 8(2): 313-352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38681755

RESUMO

Clinical information retrieval (IR) plays a vital role in modern healthcare by facilitating efficient access and analysis of medical literature for clinicians and researchers. This scoping review aims to offer a comprehensive overview of the current state of clinical IR research and identify gaps and potential opportunities for future studies in this field. The main objective was to assess and analyze the existing literature on clinical IR, focusing on the methods, techniques, and tools employed for effective retrieval and analysis of medical information. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted an extensive search across databases such as Ovid Embase, Ovid Medline, Scopus, ACM Digital Library, IEEE Xplore, and Web of Science, covering publications from January 1, 2010, to January 4, 2023. The rigorous screening process led to the inclusion of 184 papers in our review. Our findings provide a detailed analysis of the clinical IR research landscape, covering aspects like publication trends, data sources, methodologies, evaluation metrics, and applications. The review identifies key research gaps in clinical IR methods such as indexing, ranking, and query expansion, offering insights and opportunities for future studies in clinical IR, thus serving as a guiding framework for upcoming research efforts in this rapidly evolving field. The study also underscores an imperative for innovative research on advanced clinical IR systems capable of fast semantic vector search and adoption of neural IR techniques for effective retrieval of information from unstructured electronic health records (EHRs). Supplementary Information: The online version contains supplementary material available at 10.1007/s41666-024-00159-4.

8.
Stud Health Technol Inform ; 310: 274-278, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269808

RESUMO

Continuous intraoperative monitoring with electroencephalo2 graphy (EEG) is commonly used to detect cerebral ischemia in high-risk surgical procedures such as carotid endarterectomy. Machine learning (ML) models that detect ischemia in real time can form the basis of automated intraoperative EEG monitoring. In this study, we describe and compare two time-series aware precision and recall metrics to the classical precision and recall metrics for evaluating the performance of ML models that detect ischemia. We trained six ML models to detect ischemia in intraoperative EEG and evaluated them with the area under the precision-recall curve (AUPRC) using time-series aware and classical approaches to compute precision and recall. The Support Vector Classification (SVC) model performed the best on the time-series aware metrics, while the Light Gradient Boosting Machine (LGBM) model performed the best on the classical metrics. Visual inspection of the probability outputs of the models alongside the actual ischemic periods revealed that the time-series aware AUPRC selected a model more likely to predict ischemia onset in a timely fashion than the model selected by classical AUPRC.


Assuntos
Isquemia , Monitorização Intraoperatória , Humanos , Fatores de Tempo , Área Sob a Curva , Eletroencefalografia
9.
J Cardiothorac Vasc Anesth ; 38(2): 526-533, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37838509

RESUMO

OBJECTIVE: Postoperative delirium (POD) can occur in up to 50% of older patients undergoing cardiovascular surgery, resulting in hospitalization and significant morbidity and mortality. This study aimed to determine whether intraoperative neurophysiologic monitoring (IONM) modalities can be used to predict delirium in patients undergoing cardiovascular surgery. DESIGN: Adult patients undergoing cardiovascular surgery with IONM between 2019 and 2021 were reviewed retrospectively. Delirium was assessed multiple times using the Intensive Care Delirium Screening Checklist (ICDSC). Patients with an ICDSC score ≥4 were considered to have POD. Significant IONM changes were evaluated based on a visual review of electroencephalography (EEG) and somatosensory evoked potentials data and documentation of significant changes during surgery. SETTING: University of Pittsburgh Medical Center hospitals. PARTICIPANTS: Patients 18 years old and older undergoing cardiovascular surgery with IONM monitoring. MEASUREMENTS AND MAIN RESULTS: Of the 578 patients undergoing cardiovascular surgery with IONM, 126 had POD (21.8%). Significant IONM changes were noted in 134 patients, of whom 49 patients had delirium (36.6%). In contrast, 444 patients had no IONM changes during surgery, of whom 77 (17.3%) patients had POD. Upon multivariate analysis, IONM changes were associated with POD (odds ratio 2.12; 95% CI 1.31-3.44; p < 0.001). Additionally, baseline EEG abnormalities were associated with POD (p = 0.002). CONCLUSION: Significant IONM changes are associated with an increased risk of POD in patients undergoing cardiovascular surgery. These findings offer a basis for future research and analysis of EEG and somatosensory evoked potential monitoring to predict, detect, and prevent POD.


Assuntos
Delírio do Despertar , Monitorização Neurofisiológica Intraoperatória , Adulto , Humanos , Adolescente , Estudos Retrospectivos , Potenciais Somatossensoriais Evocados/fisiologia , Monitorização Neurofisiológica Intraoperatória/métodos , Eletroencefalografia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle
10.
Am J Cardiol ; 213: 126-131, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38103769

RESUMO

Valvular heart diseases (VHDs) significantly impact morbidity and mortality rates worldwide. Early diagnosis improves patient outcomes. Artificial intelligence (AI) applied to electrocardiogram (ECG) interpretation presents a promising approach for early VHD detection. We conducted a meta-analysis on the efficacy of AI models in this context. We reviewed databases including PubMed, MEDLINE, Embase, Scopus, and Cochrane until August 20, 2023, focusing on AI for ECG-based VHD detection. The outcomes included pooled accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value. The pooled proportions were derived using a random-effects model with 95% confidence intervals (CIs). Study heterogeneity was evaluated with the I-squared statistic. Our analysis included 10 studies, involving ECG data from 713,537 patients. The AI algorithms mainly screened for aortic stenosis (n = 6), mitral regurgitation (n = 4), aortic regurgitation (n = 3), mitral stenosis (n = 1), mitral valve prolapse (n = 2), and tricuspid regurgitation (n = 1). A total of 9 studies used convolution neural network models, whereas 1 study combined the strengths of support vector machine logistic regression and multilayer perceptron for ECG interpretation. The collective AI models demonstrated a pooled accuracy of 81% (95% CI 73 to 89, I² = 92%), sensitivity was 83% (95% CI 77 to 88, I² = 86%), specificity was 72% (95% CI 68 to 75, I² = 52%), PPV was 13% (95% CI 7 to 19, I² = 90%), and negative predictive value was 99% (95% CI 97 to 99, I² = 50%). The subgroup analyses for aortic stenosis and mitral regurgitation detection yielded analogous outcomes. In conclusion, AI-driven ECG offers high accuracy in VHD screening. However, its low PPV indicates the need for a combined approach with clinical judgment, especially in primary care settings.


Assuntos
Estenose da Valva Aórtica , Doenças das Valvas Cardíacas , Insuficiência da Valva Mitral , Humanos , Inteligência Artificial , Doenças das Valvas Cardíacas/diagnóstico , Estenose da Valva Aórtica/diagnóstico , Eletrocardiografia
11.
medRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790354

RESUMO

Clinical predictive models that include race as a predictor have the potential to exacerbate disparities in healthcare. Such models can be respecified to exclude race or optimized to reduce racial bias. We investigated the impact of such respecifications in a predictive model - UTICalc - which was designed to reduce catheterizations in young children with suspected urinary tract infections. To reduce racial bias, race was removed from the UTICalc logistic regression model and replaced with two new features. We compared the two versions of UTICalc using fairness and predictive performance metrics to understand the effects on racial bias. In addition, we derived three new models for UTICalc to specifically improve racial fairness. Our results show that, as predicted by previously described impossibility results, fairness cannot be simultaneously improved on all fairness metrics, and model respecification may improve racial fairness but decrease overall predictive performance.

12.
medRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790390

RESUMO

Background: A scalable approach for the sharing and reuse of human-readable and computer-executable phenotype definitions can facilitate the reuse of electronic health records for cohort identification and research studies. Description: We developed a tool called Sharephe for the Informatics for Integrating Biology and the Bedside (i2b2) platform. Sharephe consists of a plugin for i2b2 and a cloud-based searchable repository of computable phenotypes, has the functionality to import to and export from the repository, and has the ability to link to supporting metadata. Discussion: The i2b2 platform enables researchers to create, evaluate, and implement phenotypes without knowing complex query languages. In an initial evaluation, two sites on the Evolve to Next-Gen ACT (ENACT) network used Sharephe to successfully create, share, and reuse phenotypes. Conclusion: The combination of a cloud-based computable repository and an i2b2 plugin for accessing the repository enables investigators to store and retrieve phenotypes from anywhere and at any time and to collaborate across sites in a research network.

13.
EClinicalMedicine ; 64: 102210, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37745021

RESUMO

Background: Characterizing Post-Acute Sequelae of COVID (SARS-CoV-2 Infection), or PASC has been challenging due to the multitude of sub-phenotypes, temporal attributes, and definitions. Scalable characterization of PASC sub-phenotypes can enhance screening capacities, disease management, and treatment planning. Methods: We conducted a retrospective multi-centre observational cohort study, leveraging longitudinal electronic health record (EHR) data of 30,422 patients from three healthcare systems in the Consortium for the Clinical Characterization of COVID-19 by EHR (4CE). From the total cohort, we applied a deductive approach on 12,424 individuals with follow-up data and developed a distributed representation learning process for providing augmented definitions for PASC sub-phenotypes. Findings: Our framework characterized seven PASC sub-phenotypes. We estimated that on average 15.7% of the hospitalized COVID-19 patients were likely to suffer from at least one PASC symptom and almost 5.98%, on average, had multiple symptoms. Joint pain and dyspnea had the highest prevalence, with an average prevalence of 5.45% and 4.53%, respectively. Interpretation: We provided a scalable framework to every participating healthcare system for estimating PASC sub-phenotypes prevalence and temporal attributes, thus developing a unified model that characterizes augmented sub-phenotypes across the different systems. Funding: Authors are supported by National Institute of Allergy and Infectious Diseases, National Institute on Aging, National Center for Advancing Translational Sciences, National Medical Research Council, National Institute of Neurological Disorders and Stroke, European Union, National Institutes of Health, National Center for Advancing Translational Sciences.

14.
EClinicalMedicine ; 64: 102212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37745025

RESUMO

Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection. It remains unclear how MIS-C phenotypes vary across SARS-CoV-2 variants. We aimed to investigate clinical characteristics and outcomes of MIS-C across SARS-CoV-2 eras. Methods: We performed a multicentre observational retrospective study including seven paediatric hospitals in four countries (France, Spain, U.K., and U.S.). All consecutive confirmed patients with MIS-C hospitalised between February 1st, 2020, and May 31st, 2022, were included. Electronic Health Records (EHR) data were used to calculate pooled risk differences (RD) and effect sizes (ES) at site level, using Alpha as reference. Meta-analysis was used to pool data across sites. Findings: Of 598 patients with MIS-C (61% male, 39% female; mean age 9.7 years [SD 4.5]), 383 (64%) were admitted in the Alpha era, 111 (19%) in the Delta era, and 104 (17%) in the Omicron era. Compared with patients admitted in the Alpha era, those admitted in the Delta era were younger (ES -1.18 years [95% CI -2.05, -0.32]), had fewer respiratory symptoms (RD -0.15 [95% CI -0.33, -0.04]), less frequent non-cardiogenic shock or systemic inflammatory response syndrome (SIRS) (RD -0.35 [95% CI -0.64, -0.07]), lower lymphocyte count (ES -0.16 × 109/uL [95% CI -0.30, -0.01]), lower C-reactive protein (ES -28.5 mg/L [95% CI -46.3, -10.7]), and lower troponin (ES -0.14 ng/mL [95% CI -0.26, -0.03]). Patients admitted in the Omicron versus Alpha eras were younger (ES -1.6 years [95% CI -2.5, -0.8]), had less frequent SIRS (RD -0.18 [95% CI -0.30, -0.05]), lower lymphocyte count (ES -0.39 × 109/uL [95% CI -0.52, -0.25]), lower troponin (ES -0.16 ng/mL [95% CI -0.30, -0.01]) and less frequently received anticoagulation therapy (RD -0.19 [95% CI -0.37, -0.04]). Length of hospitalization was shorter in the Delta versus Alpha eras (-1.3 days [95% CI -2.3, -0.4]). Interpretation: Our study suggested that MIS-C clinical phenotypes varied across SARS-CoV-2 eras, with patients in Delta and Omicron eras being younger and less sick. EHR data can be effectively leveraged to identify rare complications of pandemic diseases and their variation over time. Funding: None.

15.
J Am Med Inform Assoc ; 30(12): 1985-1994, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37632234

RESUMO

OBJECTIVE: Patients who receive most care within a single healthcare system (colloquially called a "loyalty cohort" since they typically return to the same providers) have mostly complete data within that organization's electronic health record (EHR). Loyalty cohorts have low data missingness, which can unintentionally bias research results. Using proxies of routine care and healthcare utilization metrics, we compute a per-patient score that identifies a loyalty cohort. MATERIALS AND METHODS: We implemented a computable program for the widely adopted i2b2 platform that identifies loyalty cohorts in EHRs based on a machine-learning model, which was previously validated using linked claims data. We developed a novel validation approach, which tests, using only EHR data, whether patients returned to the same healthcare system after the training period. We evaluated these tools at 3 institutions using data from 2017 to 2019. RESULTS: Loyalty cohort calculations to identify patients who returned during a 1-year follow-up yielded a mean area under the receiver operating characteristic curve of 0.77 using the original model and 0.80 after calibrating the model at individual sites. Factors such as multiple medications or visits contributed significantly at all sites. Screening tests' contributions (eg, colonoscopy) varied across sites, likely due to coding and population differences. DISCUSSION: This open-source implementation of a "loyalty score" algorithm had good predictive power. Enriching research cohorts by utilizing these low-missingness patients is a way to obtain the data completeness necessary for accurate causal analysis. CONCLUSION: i2b2 sites can use this approach to select cohorts with mostly complete EHR data.


Assuntos
Algoritmos , Registros Eletrônicos de Saúde , Humanos , Aprendizado de Máquina , Atenção à Saúde , Eletrônica
16.
medRxiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37636340

RESUMO

Background: Social determinants of health (SDoH), such as financial resources and housing stability, account for between 30-55% of people's health outcomes. While many studies have identified strong associations among specific SDoH and health outcomes, most people experience multiple SDoH that impact their daily lives. Analysis of this complexity requires the integration of personal, clinical, social, and environmental information from a large cohort of individuals that have been traditionally underrepresented in research, which is only recently being made available through the All of Us research program. However, little is known about the range and response of SDoH in All of Us, and how they co-occur to form subtypes, which are critical for designing targeted interventions. Objective: To address two research questions: (1) What is the range and response to survey questions related to SDoH in the All of Us dataset? (2) How do SDoH co-occur to form subtypes, and what are their risk for adverse health outcomes? Methods: For Question-1, an expert panel analyzed the range of SDoH questions across the surveys with respect to the 5 domains in Healthy People 2030 (HP-30), and analyzed their responses across the full All of Us data (n=372,397, V6). For Question-2, we used the following steps: (1) due to the missingness across the surveys, selected all participants with valid and complete SDoH data, and used inverse probability weighting to adjust their imbalance in demographics compared to the full data; (2) an expert panel grouped the SDoH questions into SDoH factors for enabling a more consistent granularity; (3) used bipartite modularity maximization to identify SDoH biclusters, their significance, and their replicability; (4) measured the association of each bicluster to three outcomes (depression, delayed medical care, emergency room visits in the last year) using multiple data types (surveys, electronic health records, and zip codes mapped to Medicaid expansion states); and (5) the expert panel inferred the subtype labels, potential mechanisms that precipitate adverse health outcomes, and interventions to prevent them. Results: For Question-1, we identified 110 SDoH questions across 4 surveys, which covered all 5 domains in HP-30. However, the results also revealed a large degree of missingness in survey responses (1.76%-84.56%), with later surveys having significantly fewer responses compared to earlier ones, and significant differences in race, ethnicity, and age of participants of those that completed the surveys with SDoH questions, compared to those in the full All of Us dataset. Furthermore, as the SDoH questions varied in granularity, they were categorized by an expert panel into 18 SDoH factors. For Question-2, the subtype analysis (n=12,913, d=18) identified 4 biclusters with significant biclusteredness (Q=0.13, random-Q=0.11, z=7.5, P<0.001), and significant replication (Real-RI=0.88, Random-RI=0.62, P<.001). Furthermore, there were statistically significant associations between specific subtypes and the outcomes, and with Medicaid expansion, each with meaningful interpretations and potential targeted interventions. For example, the subtype Socioeconomic Barriers included the SDoH factors not employed, food insecurity, housing insecurity, low income, low literacy, and low educational attainment, and had a significantly higher odds ratio (OR=4.2, CI=3.5-5.1, P-corr<.001) for depression, when compared to the subtype Sociocultural Barriers. Individuals that match this subtype profile could be screened early for depression and referred to social services for addressing combinations of SDoH such as housing insecurity and low income. Finally, the identified subtypes spanned one or more HP-30 domains revealing the difference between the current knowledge-based SDoH domains, and the data-driven subtypes. Conclusions: The results revealed that the SDoH subtypes not only had statistically significant clustering and replicability, but also had significant associations with critical adverse health outcomes, which had translational implications for designing targeted SDoH interventions, decision-support systems to alert clinicians of potential risks, and for public policies. Furthermore, these SDoH subtypes spanned multiple SDoH domains defined by HP-30 revealing the complexity of SDoH in the real-world, and aligning with influential SDoH conceptual models such as by Dahlgren-Whitehead. However, the high-degree of missingness warrants repeating the analysis as the data becomes more complete. Consequently we designed our machine learning code to be generalizable and scalable, and made it available on the All of Us workbench, which can be used to periodically rerun the analysis as the dataset grows for analyzing subtypes related to SDoH, and beyond.

17.
Int J Med Inform ; 177: 105144, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37459703

RESUMO

Rehabilitation research focuses on determining the components of a treatment intervention, the mechanism of how these components lead to recovery and rehabilitation, and ultimately the optimal intervention strategies to maximize patients' physical, psychologic, and social functioning. Traditional randomized clinical trials that study and establish new interventions face challenges, such as high cost and time commitment. Observational studies that use existing clinical data to observe the effect of an intervention have shown several advantages over RCTs. Electronic Health Records (EHRs) have become an increasingly important resource for conducting observational studies. To support these studies, we developed a clinical research datamart, called ReDWINE (Rehabilitation Datamart With Informatics iNfrastructure for rEsearch), that transforms the rehabilitation-related EHR data collected from the UPMC health care system to the Observational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) to facilitate rehabilitation research. The standardized EHR data stored in ReDWINE will further reduce the time and effort required by investigators to pool, harmonize, clean, and analyze data from multiple sources, leading to more robust and comprehensive research findings. ReDWINE also includes deployment of data visualization and data analytics tools to facilitate cohort definition and clinical data analysis. These include among others the Open Health Natural Language Processing (OHNLP) toolkit, a high-throughput NLP pipeline, to provide text analytical capabilities at scale in ReDWINE. Using this comprehensive representation of patient data in ReDWINE for rehabilitation research will facilitate real-world evidence for health interventions and outcomes.


Assuntos
Informática Médica , Pesquisa de Reabilitação , Humanos , Registros Eletrônicos de Saúde , Processamento de Linguagem Natural
18.
PLOS Digit Health ; 2(7): e0000301, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37490472

RESUMO

Physical and psychological symptoms lasting months following an acute COVID-19 infection are now recognized as post-acute sequelae of COVID-19 (PASC). Accurate tools for identifying such patients could enhance screening capabilities for the recruitment for clinical trials, improve the reliability of disease estimates, and allow for more accurate downstream cohort analysis. In this retrospective cohort study, we analyzed the EHR of hospitalized COVID-19 patients across three healthcare systems to develop a pipeline for better identifying patients with persistent PASC symptoms (dyspnea, fatigue, or joint pain) after their SARS-CoV-2 infection. We implemented distributed representation learning powered by the Machine Learning for modeling Health Outcomes (MLHO) to identify novel EHR features that could suggest PASC symptoms outside of typical diagnosis codes. MLHO applies an entropy-based feature selection and boosting algorithms for representation mining. These improved definitions were then used for estimating PASC among hospitalized patients. 30,422 hospitalized patients were diagnosed with COVID-19 across three healthcare systems between March 13, 2020 and February 28, 2021. The mean age of the population was 62.3 years (SD, 21.0 years) and 15,124 (49.7%) were female. We implemented the distributed representation learning technique to augment PASC definitions. These definitions were found to have positive predictive values of 0.73, 0.74, and 0.91 for dyspnea, fatigue, and joint pain, respectively. We estimated that 25 percent (CI 95%: 6-48), 11 percent (CI 95%: 6-15), and 13 percent (CI 95%: 8-17) of hospitalized COVID-19 patients will have dyspnea, fatigue, and joint pain, respectively, 3 months or longer after a COVID-19 diagnosis. We present a validated framework for screening and identifying patients with PASC in the EHR and then use the tool to estimate its prevalence among hospitalized COVID-19 patients.

19.
medRxiv ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461462

RESUMO

Some clinical algorithms incorporate a person's race, ethnicity, or both as an input variable or predictor in determining diagnoses, prognoses, treatment plans, or risk assessments. Inappropriate use of race and ethnicity in clinical algorithms at the point of care may exacerbate health disparities and promote harmful practices of race-based medicine. This article describes a comprehensive search of online resources, the scientific literature, and the FDA Drug Label Information that uncovered 39 race-based risk calculators, six laboratory test results with race-based reference ranges, one race-based therapy recommendation, and 15 medications with race-based recommendations. These clinical algorithms based on race are freely accessible through an online database. This resource aims to raise awareness about the use of race-based clinical algorithms and track the progress made toward eradicating the inappropriate use of race. The database will be actively updated to include clinical algorithms based on race that were previously omitted, along with additional characteristics of these algorithms.

20.
Artif Intell Med ; 139: 102546, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100513

RESUMO

In this paper we investigate which airborne pollutants have a short-term causal effect on cardiovascular and respiratory disease using the Ancestral Probabilities (AP) procedure, a novel Bayesian approach for deriving the probabilities of causal relationships from observational data. The results are largely consistent with EPA assessments of causality, however, in a few cases AP suggests that some pollutants thought to cause cardiovascular or respiratory disease are associated due purely to confounding. The AP procedure utilizes maximal ancestral graph (MAG) models to represent and assign probabilities to causal relationships while accounting for latent confounding. The algorithm does so locally by marginalizing over models with and without causal features of interest. Before applying AP to real data, we evaluate it in a simulation study and investigate the benefits of providing background knowledge. Overall, the results suggest that AP is an effective tool for causal discovery.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Teorema de Bayes , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...