Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 185(7): 1820-33, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25976245

RESUMO

In recent years, important advances have been achieved in the understanding of the molecular biology of glioblastoma multiforme (GBM); thus, complex genetic alterations and genomic profiles, which recurrently involve multiple signaling pathways, have been defined, leading to the first molecular/genetic classification of the disease. In this regard, different genetic alterations and genetic pathways appear to distinguish primary (eg, EGFR amplification) versus secondary (eg, IDH1/2 or TP53 mutation) GBM. Such genetic alterations target distinct combinations of the growth factor receptor-ras signaling pathways, as well as the phosphatidylinositol 3-kinase/phosphatase and tensin homolog/AKT, retinoblastoma/cyclin-dependent kinase (CDK) N2A-p16(INK4A), and TP53/mouse double minute (MDM) 2/MDM4/CDKN2A-p14(ARF) pathways, in cells that present features associated with key stages of normal neurogenesis and (normal) central nervous system cell types. This translates into well-defined genomic profiles that have been recently classified by The Cancer Genome Atlas Consortium into four subtypes: classic, mesenchymal, proneural, and neural GBM. Herein, we review the most relevant genetic alterations of primary versus secondary GBM, the specific signaling pathways involved, and the overall genomic profile of this genetically heterogeneous group of malignant tumors.


Assuntos
Neoplasias Encefálicas/genética , Genômica , Glioblastoma/genética , Transdução de Sinais , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Epigenômica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...