Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 120(6): 9608-9623, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30525230

RESUMO

Several molecules extracted from natural products exhibit different biological activities, such as ion channel modulation, activation of signaling pathways, and anti-inflammatory or antitumor activity. In this study, we tested the antitumor ability of natural compounds extracted from the Raputia praetermissa plant. Among the compounds tested, an alkaloid, here called compound S4 (4-Deoxyraputindole C), showed antitumor effects against human tumor lineages. Compound S4 was the most active against Raji, a lymphoma lineage, promoting cell death with characteristics that including membrane permeabilization, dissipation of the mitochondrial potential, increased superoxide production, and lysosomal membrane permeabilization. The use of cell death inhibitors such as Z-VAD-FMK (caspase inhibitor), necrostatin-1 (receptor-interacting serine/threonine-protein kinase 1 inhibitor), E-64 (cysteine peptidases inhibitor), and N-acetyl- L-cysteine (antioxidant) did not decrease compound S4-dependent cell death. Additionally, we tested the effect of cellular activity on adherent human tumor cells. The highest reduction of cellular activity was observed in A549 cells, a lung carcinoma lineage. In this lineage, the effect on the reduction of the cellular activity was due to cell cycle arrest, without plasma membrane permeabilization, loss of the mitochondrial potential or lysosomal membrane permeabilization. Compound S4 was able to inhibit cathepsin B and L by a nonlinear competitive (negative co-operativity) and simple-linear competitive inhibitions, respectively. The potency of inhibition was higher against cathepsin L. Compound S4 promoted cell cycle arrest at G 0 and G 2 phase, and increase the expression of p16 and p21 proteins. In conclusion, compound S4 is an interesting molecule against cancer, promoting cell death in the human lymphoma lineage Raji and cell cycle arrest in the human lung carcinoma lineage A549.


Assuntos
Alcaloides/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Alcaloides/química , Alcaloides/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Catepsina B/metabolismo , Catepsina L/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Cinética , Leucemia/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Necrose , Rutaceae/química
2.
Front Pharmacol ; 8: 466, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855870

RESUMO

Phytochemical studies are seeking new alternatives to prevent or treat cancer, including different types of leukemias. Campomanesia adamantium, commonly known as guavira or guabiroba, exhibits pharmacological properties including antioxidant, antimicrobial, and antiproliferative activities. Considering the anticancer potential of this plant species, the aim of this study was to evaluate the antileukemic activity and the chemical composition of aqueous extracts from the leaves (AECL) and roots (AECR) of C. adamantium and their possible mechanisms of action. The extracts were analyzed by LC-DAD-MS, and their constituents were identified based on the UV, MS, and MS/MS data. The AECL and AECR showed different chemical compositions, which were identified as main compounds glycosylated flavonols from AECL and ellagic acid and their derivatives from AECR. The cytotoxicity promoted by these extracts were evaluated using human peripheral blood mononuclear cells and Jurkat leukemic cell line. The cell death profile was evaluated using annexin-V-FITC and propidium iodide labeling. Changes in the mitochondrial membrane potential, the activity of caspases, and intracellular calcium levels were assessed. The cell cycle profile was evaluated using propidium iodide. Both extracts caused concentration-dependent cytotoxicity only in Jurkat cells via late apoptosis. This activity was associated with loss of the mitochondrial membrane potential, activation of caspases-9 and -3, changes in intracellular calcium levels, and cell cycle arrest in S-phase. Therefore, the antileukemic activity of the AECL and AECR is mediated by mitochondrial dysfunction and intracellular messengers, which activate the intrinsic apoptotic pathway. Hence, aqueous extracts of the leaves and roots of C. adamantium show therapeutic potential for use in the prevention and treatment of diseases associated the proliferation of tumor cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...