Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Polymers (Basel) ; 16(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475357

RESUMO

This study reports on the two-step manufacturing process of a filtration media obtained by first electrospinning a layer of polycaprolactone (PCL) non-woven fibers onto a paper filter backing and subsequently coating it by electrospraying with a second layer made of pure acidolysis lignin. The manufacturing of pure lignin coatings by solution electrospraying represents a novel development that requires fine control of the underlying electrodynamic processing. The effect of increasing deposition time on the lignin coating was investigated for electrospray time from 2.5 min to 120 min. Microstructural and physical characterization included SEM, surface roughness analysis, porosity tests, permeability tests by a Gurley densometer, ATR-FTIR analysis, and contact angle measurements vs. both water and oil. The results indicate that, from a functional viewpoint, such a natural coating endowed the membrane with an amphiphilic behavior that enabled modulating the nature of the bare PCL non-woven substrate. Accordingly, the intrinsic hydrophobic behavior of bare PCL electrospun fibers could be reduced, with a marked decrease already for a thin coating of less than 50 nm. Instead, the wettability of PCL vs. apolar liquids was altered in a less predictable manner, i.e., producing an initial increase of the oil contact angles (OCA) for thin lignin coating, followed by a steady decrease in OCA for higher densities of deposited lignin. To highlight the effect of the lignin type on the results, two grades of oak (AL-OA) of the Quercus cerris L. species and eucalyptus (AL-EU) of the Eucalyptus camaldulensis Dehnh species were compared throughout the investigation. All grades of lignin yielded coatings with measurable antibacterial properties, which were investigated against Staphylococcus aureus and Escherichia coli, yielding superior results for AL-EU. Remarkably, the lignin coatings did not change overall porosity but smoothed the surface roughness and allowed modulating air permeability, which is relevant for filtration applications. The findings are relevant for applications of this abundant biopolymer not only for filtration but also in biotechnology, health, packaging, and circular economy applications in general, where the reuse of such natural byproducts also brings a fundamental demanufacturing advantage.

2.
Pharmaceutics ; 16(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399220

RESUMO

Electrospinning is an advanced manufacturing strategy used to create innovative medical devices from continuous nanoscale fibers that is endowed with tunable biological, chemical, and physical properties. Innovative medical patches manufactured entirely by electrospinning are discussed in this paper, using a specific plant-derived formulation "1 Primary Wound Dressing©" (1-PWD) as an active pharmaceutical ingredient (API). 1-PWD is composed of neem oil (Azadirachta indica A. Juss.) and the oily extracts of Hypericum perforatum (L.) flowers, according to the formulation patented by the ENEA of proven therapeutic efficacy as wound dressings. The goal of this work is to encapsulate this API and demonstrate that its slow release from an engineered electrospun patch can increase the therapeutic efficacy for wound healing. The prototyped patch is a three-layer core-shell membrane, with a core made of fibers from a 1-PWD-PEO blend, enveloped within two external layers made of medical-grade polycaprolactone (PCL), ensuring mechanical strength and integrity during manipulation. The system was characterized via electron microscopy (SEM) and chemical and contact angle tests. The encapsulation, release, and efficacy of the API were confirmed by FTIR and LC-HRMS and were validated via in vitro toxicology and scratch assays.

4.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240150

RESUMO

Pelvic radiation disease (PRD), a frequent side effect in patients with abdominal/pelvic cancers treated with radiotherapy, remains an unmet medical need. Currently available preclinical models have limited applications for the investigation of PRD pathogenesis and possible therapeutic strategies. In order to select the most effective irradiation protocol for PRD induction in mice, we evaluated the efficacy of three different locally and fractionated X-ray exposures. Using the selected protocol (10 Gy/day × 4 days), we assessed PRD through tissue (number and length of colon crypts) and molecular (expression of genes involved in oxidative stress, cell damage, inflammation, and stem cell markers) analyses at short (3 h or 3 days after X-ray) and long (38 days after X-rays) post-irradiation times. The results show that a primary damage response in term of apoptosis, inflammation, and surrogate markers of oxidative stress was found, thus determining a consequent impairment of cell crypts differentiation and proliferation as well as a local inflammation and a bacterial translocation to mesenteric lymph nodes after several weeks post-irradiation. Changes were also found in microbiota composition, particularly in the relative abundance of dominant phyla, related families, and in alpha diversity indices, as an indication of dysbiotic conditions induced by irradiation. Fecal markers of intestinal inflammation, measured during the experimental timeline, identified lactoferrin, along with elastase, as useful non-invasive tools to monitor disease progression. Thus, our preclinical model may be useful to develop new therapeutic strategies for PRD treatment.


Assuntos
Lesões por Radiação , Camundongos , Animais , Raios X , Modelos Animais de Doenças , Apoptose/efeitos da radiação , Inflamação
5.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108260

RESUMO

Extracellular High-mobility group box 1 (HMGB1) contributes to the pathogenesis of inflammatory disorders, including inflammatory bowel diseases (IBD). Poly (ADP-ribose) polymerase 1 (PARP1) has been recently reported to promote HMGB1 acetylation and its secretion outside cells. In this study, the relationship between HMGB1 and PARP1 in controlling intestinal inflammation was explored. C57BL6/J wild type (WT) and PARP1-/- mice were treated with DSS to induce acute colitis, or with the DSS and PARP1 inhibitor, PJ34. Human intestinal organoids, which are originated from ulcerative colitis (UC) patients, were exposed to pro-inflammatory cytokines (INFγ + TNFα) to induce intestinal inflammation, or coexposed to cytokines and PJ34. Results show that PARP1-/- mice develop less severe colitis than WT mice, evidenced by a significant decrease in fecal and serum HMGB1, and, similarly, treating WT mice with PJ34 reduces the secreted HMGB1. The exposure of intestinal organoids to pro-inflammatory cytokines results in PARP1 activation and HMGB1 secretion; nevertheless, the co-exposure to PJ34, significantly reduces the release of HMGB1, improving inflammation and oxidative stress. Finally, HMGB1 release during inflammation is associated with its PARP1-induced PARylation in RAW264.7 cells. These findings offer novel evidence that PARP1 favors HMGB1 secretion in intestinal inflammation and suggest that impairing PARP1 might be a novel approach to manage IBD.


Assuntos
Colite , Proteína HMGB1 , Doenças Inflamatórias Intestinais , Poli(ADP-Ribose) Polimerase-1 , Animais , Humanos , Camundongos , Colite/induzido quimicamente , Citocinas , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Inflamação , Organoides , Poli(ADP-Ribose) Polimerase-1/genética
6.
J Crohns Colitis ; 17(1): 92-102, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36040453

RESUMO

BACKGROUND: Faecal biomarkers have emerged as important tools in managing of inflammatory bowel disease [IBD], which includes Crohn's disease [CD] and ulcerative colitis [UC]. AIM: To identify new biomarkers of gut inflammation in the stools of IBD patients using a proteomic approach. METHODS: Proteomic analysis of stools was performed in patients with both active CD and CD in remission and in controls by 2-DIGE and MALDI-TOF/TOF MS. An ELISA was used to confirm results in a second cohort of IBD patients and controls. RESULTS: 2-DIGE analysis detected 70 spots in the stools of patients with active CD or patients in remission CD and in controls. MALDI-TOF/TOF MS analysis identified 21 proteins with Chymotrypsin C, Gelsolin and Rho GDP-dissociation inhibitor 2 [RhoGDI2] best correlating with the levels of intestinal inflammation. Results were confirmed in a second cohort of IBD patients and controls [57 CD, 60 UC, 31 controls]. The identified faecal markers significantly correlated with the severity of intestinal inflammation in IBD patients [SES-CD in CD, Mayo endoscopic subscore in UC] [CD; Chymotrypsin-C: r = 0.64, p < 0.001; Gelsolin: r = 0.82, p < 0.001; RhoGDI2: r = 0.64, p < 0.001; UC; Chymotrypsin-C: r = 0.76, p < 0.001; Gelsolin: r = 0.75, p < 0.001; RhoGDI2: r = 0.63, p < 0.001]. Moreover, ROC analysis showed that Gelsolin [p < 0.0002] and RhoGDI2 [p < 0.0001] in CD, and RhoGDI2 [p = 0.0004] in UC, have higher sensitivity and specificity than faecal calprotectin in discriminating between patients and controls. CONCLUSIONS: We show for the first time that 2-DIGE is a reliable method to detect proteins in human stools. Three novel faecal biomarkers of gut inflammation have been identified that display good specificity and sensitivity for identifying IBD and significantly correlate with IBD severity.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Quimotripsina/metabolismo , Gelsolina/metabolismo , Proteômica , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo , Mucosa Intestinal/metabolismo , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/metabolismo , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/metabolismo , Doença de Crohn/diagnóstico , Doença de Crohn/metabolismo , Biomarcadores/análise , Inflamação/metabolismo , Complexo Antígeno L1 Leucocitário/análise , Fezes/química , Índice de Gravidade de Doença
7.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430732

RESUMO

A tight relationship between gut-liver diseases and brain functions has recently emerged. Bile acid (BA) receptors, bacterial-derived molecules and the blood-brain barrier (BBB) play key roles in this association. This study was aimed to evaluate how non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) impact the BA receptors Farnesoid X receptor (FXR) and Takeda G-protein coupled receptor 5 (TGR5) expression in the brain and to correlate these effects with circulating BAs composition, BBB integrity and neuroinflammation. A mouse model of NAFLD was set up by a high-fat and sugar diet, and NASH was induced with the supplementation of dextran-sulfate-sodium (DSS) in drinking water. FXR, TGR5 and ionized calcium-binding adaptor molecule 1 (Iba-1) expression in the brain was detected by immunohistochemistry, while Zonula occludens (ZO)-1, Occludin and Plasmalemmal Vesicle Associated Protein-1 (PV-1) were analyzed by immunofluorescence. Biochemical analyses investigated serum BA composition, lipopolysaccharide-binding protein (LBP) and S100ß protein (S100ß) levels. Results showed a down-regulation of FXR in NASH and an up-regulation of TGR5 and Iba-1 in the cortex and hippocampus in both treated groups as compared to the control group. The BA composition was altered in the serum of both treated groups, and LBP and S100ß were significantly augmented in NASH. ZO-1 and Occludin were attenuated in the brain capillary endothelial cells of both treated groups versus the control group. We demonstrated that NAFLD and NASH provoke different grades of brain dysfunction, which are characterized by the altered expression of BA receptors, FXR and TGR5, and activation of microglia. These effects are somewhat promoted by a modification of circulating BAs composition and by an increase in LBP that concur to damage BBB, thus favoring neuroinflammation.


Assuntos
Ácidos e Sais Biliares , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Barreira Hematoencefálica/metabolismo , Ocludina/metabolismo , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , Encéfalo/metabolismo
8.
Nanomaterials (Basel) ; 12(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432247

RESUMO

Antibacterial properties of engineered materials are important in the transition to a circular economy and societal security, as they are central to many key industrial areas, such as health, food, and water treatment/reclaiming. Nanocoating and electrospinning are two versatile, simple, and low-cost technologies that can be combined into new advanced manufacturing approaches to achieve controlled production of innovative micro- and nano-structured non-woven membranes with antifouling and antibacterial properties. The present study investigates a rational approach to design and manufacture electrospun membranes of polysulfone (PSU) with mechanical properties optimized via combinatorial testing from factorial design of experiments (DOE) and endowed with antimicrobial silver (Ag) nanocoating. Despite the very low amount of Ag deposited as a conformal percolating nanocoating web on the polymer fibers, the antimicrobial resistance assessed against the Gram-negative bacteria E. coli proved to be extremely effective, almost completely inhibiting the microbial proliferation with respect to the reference uncoated PSU membrane. The results are relevant, for example, to improve antifouling behavior in ultrafiltration and reverse osmosis in water treatment.

9.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232813

RESUMO

Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1ß, S-100, Tgf-ß and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/-/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.


Assuntos
Neoplasias Encefálicas , Colite , Doenças Inflamatórias Intestinais , Aminoácidos , Animais , Eixo Encéfalo-Intestino , Carcinogênese , Colite/patologia , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Hipocampo/metabolismo , Inflamação , Interleucina-6/metabolismo , Lipídeos/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Sulfatos , Tiamina , Fator de Crescimento Transformador beta/metabolismo
10.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142169

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory disorders of the gastrointestinal tract. Chronic inflammation is the main factor leading to intestinal fibrosis, resulting in recurrent stenosis, especially in CD patients. Currently, the underlying molecular mechanisms of fibrosis are still unclear. ZNF281 is a zinc-finger transcriptional regulator that has been characterized as an epithelial-to-mesenchymal transition (EMT)-inducing transcription factor, suggesting its involvement in the regulation of pluripotency, stemness, and cancer. The aim of this study is to investigate in vivo and in vitro the role of ZNF281 in intestinal fibrogenesis. Intestinal fibrosis was studied in vivo in C57BL/6J mice with chronic colitis induced by two or three cycles of administration of dextran sulfate sodium (DSS). The contribution of ZNF281 to gut fibrosis was studied in vitro in the human colon fibroblast cell line CCD-18Co, activated by the pro-fibrotic cytokine TGFß1. ZNF281 was downregulated by siRNA transfection, and RNA-sequencing was performed to identify genes regulated by TGFß1 in activated colon fibroblasts via ZNF281. Results showed a marked increase of ZNF281 in in vivo murine fibrotic colon as well as in in vitro human colon fibroblasts activated by TGFß1. Moreover, abrogation of ZNF281 in TGFß1-treated fibroblasts affected the expression of genes belonging to specific pathways linked to fibroblast activation and differentiation into myofibroblasts. We demonstrated that ZNF281 is a key regulator of colon fibroblast activation and myofibroblast differentiation upon fibrotic stimuli by transcriptionally controlling extracellular matrix (ECM) composition, remodeling, and cell contraction, highlighting a new role in the onset and progression of gut fibrosis.


Assuntos
Colite , Doença de Crohn , Proteínas Repressoras/metabolismo , Animais , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colo/patologia , Doença de Crohn/metabolismo , Sulfato de Dextrana , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Zinco/metabolismo
11.
Sci Rep ; 12(1): 3127, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210548

RESUMO

Microalgae are natural sources of valuable bioactive compounds, such as polyunsaturated fatty acids (PUFAs), that show antioxidant, anti-inflammatory, anticancer and antimicrobial activities. The marine microalga Isochrysis galbana (I. galbana) is extremely rich in ω3 PUFAs, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Probiotics are currently suggested as adjuvant therapy in the management of diseases associated with gut dysbiosis. The Lactobacillus reuteri (L. reuteri), one of the most widely used probiotics, has been shown to produce multiple beneficial effects on host health. The present study aimed to present an innovative method for growing the probiotic L. reuteri in the raw seaweed extracts from I. galbana as an alternative to the conventional medium, under conditions of oxygen deprivation (anaerobiosis). As a result, the microalga I. galbana was shown for the first time to be an excellent culture medium for growing L. reuteri. Furthermore, the gas-chromatography mass-spectrometry analysis showed that the microalga-derived ω3 PUFAs were still available after the fermentation by L. reuteri. Accordingly, the fermented compound (FC), obtained from the growth of L. reuteri in I. galbana in anaerobiosis, was able to significantly reduce the adhesiveness and invasiveness of the harmful adherent-invasive Escherichia coli to intestinal epithelial cells, due to a cooperative effect between L. reuteri and microalgae-released ω3 PUFAs. These findings open new perspectives in the use of unicellular microalgae as growth medium for probiotics and in the production of biofunctional compounds.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Haptófitas/microbiologia , Limosilactobacillus reuteri/crescimento & desenvolvimento , Meios de Cultura/química , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/química , Ácidos Graxos Ômega-3 , Ácidos Graxos Insaturados/química , Fermentação , Haptófitas/metabolismo , Microalgas/química , Probióticos/metabolismo
12.
Dig Liver Dis ; 54(8): 1084-1093, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34903499

RESUMO

BACKGROUND: The incidence of non-alcoholic fatty liver disease (NAFLD) and its more severe and progressive form, non-alcoholic steatohepatitis (NASH) is increasing worldwide. Gut inflammation seems to concur to the pathogenesis of NASH. No drugs are currently approved for NASH treatment. AIMS: To investigate if inflamed gut directly contributes to the progression of NASH through gut epithelial and vascular barrier impairment and to evaluate the efficacy of dipotassium glycyrrhizate (DPG) to improve the liver disease. METHODS: A NASH model was set up by feeding mice, for 8 and 13 weeks, with high fat diet with high fructose and glucose (HFD-FG) supplemented periodically with dextran sulfate sodium (DSS) in drinking water. A group was also treated with DPG by gavage. Histological, immunohistochemical and molecular analysis were performed. RESULTS: DSS-induced colitis increased steatosis, inflammatory (IL-6, TNFα, NLRP3, MCP-1) as well as fibrotic (TGF-ß, α-SMA) mediator expression in HFD-FG mice. Beneficial effect of DPG was associated with restoration of intestinal epithelial and vascular barriers, evaluated respectively by ZO-1 and PV-1 expression, that are known to limit bacterial translocation. CONCLUSION: Colonic inflammation strongly contributes to the progression of NASH, likely by favouring bacterial translocation. DPG treatment could represent a novel strategy to reduce liver injury.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Inflamação/complicações , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia
13.
Front Pediatr ; 9: 672131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178888

RESUMO

Introduction: An early diagnosis of necrotizing enterocolitis (NEC), a major gastrointestinal emergency in preterm newborns, is crucial to improve diagnostic approach and prognosis. We evaluated whether fecal high-mobility group box protein 1 (HMGB1) may early identify preterms at risk of developing NEC. Materials and Methods: A case-control study including neonates admitted at the Neonatal Intensive Care Unit (NICU) of the Sapienza University Hospital "Umberto I" in Rome, from July 2015 to December 2016. Stool samples obtained from cases (preterm newborns with NEC) and controls (newborns without NEC) were collected at the enrolment (T0) and within 7-14 days after the first sample collection (T1). HMGB1, extracted and measured with western blot, was reported as densitometry units (DUS). Results: HMGB1 levels in 30 cases (n = 28-Bell stage 1, n = 2 Bell stage 2) were higher [T0: 21,462 DUS (95% CI, 16,370-26,553 DUS)-T1: 17,533 DUS (95% CI, 13,052-22,014 DUS)] than in 30 preterm controls [T0: 9,446 DUS (95% CI, 6,147-12,746 DUS)-T1: 9,261 DUS (95% CI, 5,126-13,396 DUS), p < 0.001). Preterm newborns showed significant higher levels of HMGB1 (15,690 DUS (95% CI, 11,929-19,451 DUS)] in comparison with 30 full-term neonates with birth weight >2,500 g [6,599 DUS (95% CI, 3,141-10,058 DUS), p = 0.003]. Multivariate analysis showed that the risk of NEC was significantly (p = 0.012) related to the HMGB1 fecal levels at T0. Conclusions: We suggest fecal HMGB1 as a reliable marker of early NEC in preterm neonates. This study supports further investigation on the role of fecal HMGB1 assessment in managing preterm newborns at risk of NEC. Further studies are advocated to evaluate diagnostic accuracy of this marker in more severe forms of the disease.

14.
J Pediatr Gastroenterol Nutr ; 71(2): 189-196, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32404746

RESUMO

OBJECTIVES: The gut-liver axis has been recently investigated in depth in relation to intestinal and hepatic diseases. Key actors are bile acid (BA) receptors, as farnesoid-X-receptor (FXR), pregnane-X-receptor (PXR), and G-protein-coupled-receptor (GPCR; TGR5), that control a broad range of metabolic processes as well as inflammation and fibrosis. The present study aims to investigate the impact of intestinal inflammation on liver health with a focus on FXR, PXR, and TGR5 expression. The strategy to improve liver health by reducing gut inflammation is also considered. Modulation of BA receptors in the inflamed colonic tissues of inflammatory bowel disease (IBD) pediatric patients is analyzed. METHODS: A dextran sodium sulphate (DSS) colitis animal model was built. Co-cultures with Caco2 and HepG2 cell lines were set up. Modulation of BA receptors in biopsies of IBD pediatric patients was assessed by real-time PCR and immunohistochemistry. RESULTS: Histology showed inflammatory cell infiltration in the liver of DSS mice, where FXR and PXR were significantly decreased and oxidative stress was increased. Exposure of Caco2 to inflammatory stimuli resulted in the reduction of BA receptor expression in HepG2. Caco2 treatment with dipotassium glycyrrhizate (DPG) reduced these effects on liver cells. Inflamed colon of patients showed altered FXR, PXR, and TGR5 expression. CONCLUSIONS: This study strongly suggests that gut inflammation affects hepatic cells by altering BA receptor levels as well as increasing the production of pro-inflammatory cytokines and oxidative stress. Hence, reducing gut inflammation is needed not only to improve the intestinal disease but also to protect the liver.


Assuntos
Hepatopatias , Animais , Ácidos e Sais Biliares , Células CACO-2 , Criança , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL
16.
Front Immunol ; 10: 939, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105713

RESUMO

Gut mucosal healing (MH) is considered a key therapeutic target and prognostic parameter in the management of inflammatory bowel disease (IBD). The dipotassium glycyrrhizate (DPG), a salt of the glycoconjugated triterpene glycyrrhizin, has been shown to inhibit the High Mobility Group Box 1 (HMGB1) protein, an allarmin strongly implicated in the pathogenesis of most inflammatory and auto-immune disorders. Here we discuss new insights on how DPG acts on MH comparing the acute phase and the recovery phase from experimental colitis in mice. We found that DPG strongly accelerates MH by differently regulating pro-inflammatory (CXCL1, CXCL3, CXCL5, PTGS2, IL-1ß, IL-6, CCL12, CCL7) and wound healing (COL3A1, MMP9, VTN, PLAUR, SERPINE, CSF3, FGF2, FGF7, PLAT, TIMP1) genes as observed only during the recovery phase of colitis. Relevant issue is the identification of extracellular matrix (ECM) remodeling genes, VTN, and PLAUR, as crucial genes to achieve MH during DPG treatment. Furthermore, a noticeable recovery of intestinal epithelial barrier structural organization, wound repair ability, and functionality is observed in two human colorectal adenocarcinoma cell lines exposed to DPG during inflammation. Thus, our study identifies DPG as a potent tool for controlling intestinal inflammation and improving MH.


Assuntos
Células Epiteliais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Ácido Glicirrízico/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Colite/tratamento farmacológico , Colite/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Feminino , Proteína HMGB1/metabolismo , Células HT29 , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
17.
Dig Liver Dis ; 50(9): 916-919, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29709462

RESUMO

BACKGROUND: Celiac disease (CD) is a gluten-related immunological disorder resulting in inflammatory enteropathy. AIMS: We assessed a stool marker of intestinal inflammation, the HMGB1 protein, in children with CD on a gluten free diet (GFD) at baseline and at follow up (FU). METHODS: Thirty-nine children were investigated at diagnosis and at FU. Traditional serum markers of CD (anti-transglutaminase and anti-endomysial antibodies) and faecal HMGB1 (by enzyme-linked immunosorbent assay and immunoblotting) were tested. RESULTS: There was a marked increase at baseline in both serum anti-transglutaminase IgA (anti-tTGAs) and faecal HMGB1; the latter being undetectable in controls. A strong correlation occurred between the two markers. At 12-month FU in 24 patients on GFD, HMGB1 decreased in all subjects, yet still being detectable in six children: high anti-tTGAs where evident in three, while the three with normal anti-tTGAs were complaining of intestinal symptoms and reported a low GFD adherence. CONCLUSIONS: Faecal HMGB1 is a valuable marker of intestinal inflammation and may have a role in complementing serology in the management of CD children. Future studies including larger patient cohorts and small bowel mucosa histology will be designed to assess the relationship between faecal HMGB1 levels and duodeno-jejunal histopathology.


Assuntos
Doença Celíaca/dietoterapia , Dieta Livre de Glúten , Fezes/química , Proteína HMGB1/análise , Adolescente , Autoanticorpos/sangue , Biomarcadores/análise , Estudos de Casos e Controles , Doença Celíaca/metabolismo , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Projetos Piloto , Transglutaminases/sangue , Cooperação e Adesão ao Tratamento
18.
Front Immunol ; 9: 2907, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619271

RESUMO

Background and aims: Recent evidences reveal the occurrence of a close relationship among epithelial to mesenchymal transition (EMT), chronic inflammation and fibrosis. ZNF281 is an EMT-inducing transcription factor (EMT-TF) involved in the regulation of pluripotency, stemness, and cancer. The aim of this study was to investigate in vitro, in vivo, and ex vivo a possible role of ZNF281 in the onset and progression of intestinal inflammation. A conceivable contribution of the protein to the development of intestinal fibrosis was also explored. Methods: Human colorectal adenocarcinoma cell line, HT29, and C57BL/6 mice were used for in vitro and in vivo studies. Mucosal biopsy specimens were taken during endoscopy from 29 pediatric patients with Crohn's disease (CD), 24 with ulcerative colitis (UC) and 16 controls. ZNF281 was knocked down by transfecting HT29 cells with 20 nM small interference RNA (siRNA) targeting ZNF281 (siZNF281). Results: We show for the first time that ZNF281 is induced upon treatment with inflammatory agents in HT29 cells, in cultured uninflamed colonic samples from CD patients and in DSS-treated mice. ZNF281 expression correlates with the disease severity degree of CD and UC patients. Silencing of ZNF281 strongly reduces both inflammatory (IL-8, IL-1beta, IL-17, IL-23) and EMT/fibrotic (SNAIL, Slug, TIMP-1, vimentin, fibronectin, and α-SMA) gene expression; besides, it abolishes the increase of extracellular-collagen level as well as the morphological modifications induced by inflammation. Conclusions: The identification of transcription factor ZNF281 as a novel player of intestinal inflammation and fibrosis allows a deeper comprehension of the pathogenetic mechanisms underlying inflammatory bowel disease (IBD) and provide a new target for their cure.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Enterocolite/genética , Mucosa Intestinal/metabolismo , Transativadores/genética , Adolescente , Animais , Criança , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Sulfato de Dextrana , Enterocolite/metabolismo , Fibrose , Regulação da Expressão Gênica , Células HT29 , Humanos , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Repressoras , Transativadores/metabolismo
19.
Inflamm Bowel Dis ; 22(12): 2886-2893, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27755215

RESUMO

BACKGROUND: Fecal high mobility group box 1 (HMGB1) has been suggested to be a novel noninvasive biomarker of gut inflammation. We aimed to assess the reliability of fecal HMGB1, compared with fecal calprotectin (FC), in detecting intestinal inflammation in pediatric and adult patients with inflammatory bowel disease (IBD) and to evaluate the accuracy of HMGB1 in identifying patients with IBD in clinical and endoscopic remission who still have histologic features of inflammation. METHODS: Stool samples from 85 children with IBD (49 Crohn's disease [CD] and 36 ulcerative colitis [UC] and 119 adults [57 Crohn's disease and 62 ulcerative colitis]) were analyzed for the study. Age-matched healthy subjects were used as controls. Fecal HMGB1 and fecal calprotectin were detected through western blot and ELISA, respectively. RESULTS: Fecal HMGB1 expression was significantly increased in pediatric and adult patients with Crohn's disease and ulcerative colitis and strongly correlated with the disease severity. Fecal calprotectin and HMGB1 significantly correlated in pediatric (r: 0.60, P < 0.001) and adult (r: 0.72, P < 0.001) IBD patients. Moreover, in patients with clinical and endoscopic remission only fecal HMGB1 showed a strong match with the degree of histological scores of inflammation (CGHAS/IGHAS for Crohn's disease and Geboes Score for ulcerative colitis). CONCLUSIONS: Fecal HMGB1 is confirmed to be a reliable biomarker of intestinal inflammation; indeed, it significantly correlates with fecal calprotectin in pediatric and adult IBD patients. Moreover, only fecal HMGB1 identifies histologic inflammation in subjects with IBD in clinical and endoscopic remission.


Assuntos
Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Fezes/química , Proteína HMGB1/análise , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Western Blotting , Estudos de Casos e Controles , Criança , Colite Ulcerativa/patologia , Colite Ulcerativa/cirurgia , Colonoscopia , Doença de Crohn/patologia , Doença de Crohn/cirurgia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Mucosa Intestinal/patologia , Complexo Antígeno L1 Leucocitário/análise , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Indução de Remissão , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Adulto Jovem
20.
Inflamm Res ; 65(10): 803-13, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27335178

RESUMO

OBJECTIVE: The importance of autophagy in mechanisms underlying inflammation has been highlighted. Downstream effects of the bacterial sensor NOD2 include autophagy induction. Recently, a relationship between defects in autophagy and adherent/invasive Escherichia coli (AIEC) persistence has emerged. The present study aims at investigating the interplay between autophagy, NOD2 and AIEC bacteria and assessing the expression level of autophagic proteins in intestinal biopsies of pediatric patients with inflammatory bowel disease (IBD). METHODS: A human epithelial colorectal adenocarcinoma (Caco2) cell line stably over-expressing NOD2 was produced (Caco2NOD2). ATG16L1, LC3 and NOD2 levels were analysed in the Caco2 cell line and Caco2NOD2 after exposure to AIEC strains, by western blot and immunofluorescence. AIEC survival inside cells and TNFα, IL-8 and IL-1ßmRNA expression were analysed by gentamicin protection assay and real time PCR. ATG16L1 and LC3 expression was analyzed in the inflamed ileum and colon of 28 patients with Crohn's disease (CD), 14 with ulcerative colitis (UC) and 23 controls by western blot. RESULTS: AIEC infection increased ATG16L1 and LC3 in Caco2 cells. Exposure to AIEC strains increased LC3 and ATG16L1 in Caco2 overexpressing NOD2, more than in Caco2 wild type, while a decrease of AIEC survival rate and cytokine expression was observed in the same cell line. LC3 expression was increased in the inflamed colon of CD and UC children. CONCLUSIONS: The NOD2-mediated autophagy induction is crucial to hold the intramucosal bacterial burden, especially towards AIEC, and to limit the resulting inflammatory response. Autophagy is active in inflamed colonic tissues of IBD pediatric patients.


Assuntos
Autofagia , Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Infecções por Escherichia coli/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Adolescente , Proteínas Relacionadas à Autofagia/imunologia , Células CACO-2 , Criança , Pré-Escolar , Citocinas/genética , Células Epiteliais/microbiologia , Feminino , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestinos/citologia , Masculino , Proteínas Associadas aos Microtúbulos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...