Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(4): e15128, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37082625

RESUMO

This paper demonstrates that determining adsorption capacity and affinity through data fitting of adsorption isotherms by nonlinear regression (NLR) is more accurate than linearized Langmuir equations. Linearization errors and the subjective choice of data points used to apply the linear regression analysis may deviate the fitted adsorption parameters (constants and adsorption capacities) from the expected values. The deviation magnitude increases for heterogeneous sorbents such as environmental particles and molecularly imprinted polymers, which adsorb by more than one sorption mechanism or adsorption sites of diverse chemical natures. For instance, Lineweaver-Burk linearization of isotherms simulated considering the presence of two adsorption sites (distinct adsorption energies) provides excellent linear regression fittings but for only one kind of adsorption site. Contrary, Scatchard and Eadie-Hoffsiee's equations indicate the presence of more than one kind of adsorption site, but if the difference between the adsorption constants is not significant, the choice of points used to perform the computation becomes subjective. On the contrary, NLR analysis considers all the adsorption points (experimental or simulated), providing objective criteria to define if more than one kind of site or retention mechanism rules the adsorbed amounts of analyte. The fitted constants have smaller deviations from the expected values than those obtained by linearization. In addition to the simulated data, the enhanced robustness of the NLR was demonstrated in the determination of the adsorption capacity and adsorption affinity of a humic acid sample towards Cu2+ at different pH.

2.
J Sep Sci ; 45(1): 134-148, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34128332

RESUMO

Even at low concentrations in environmental waters, some viruses are highly infective, making them a threat to human health. They are the leading cause of waterborne enteric diseases. In agriculture, plant viruses in irrigation and runoff water threat the crops. The low concentrations pose a challenge to early contamination detection. Thus, concentrating the virus particles into a small volume may be mandatory to achieve reliable detection in molecular techniques. This paper reviews the organic monoliths developments and their applications to concentrate virus particles from waters (waste, surface, tap, sea, and irrigation waters). Free-radical polymerization and polyaddition reactions are the most common strategies to prepare the monoliths currently used for virus concentration. Here, the routes for preparing and functionalizing both methacrylate and epoxy-based monoliths will be shortly described, following a revision of their retention mechanisms and applications in the concentration of enteric and plant viruses in several kinds of waters.


Assuntos
Cromatografia/métodos , Enterovirus/isolamento & purificação , Água Doce/virologia , Vírus de Plantas/isolamento & purificação , Polímeros/química , Ultrafiltração/métodos , Águas Residuárias/virologia , Irrigação Agrícola , Cromatografia/instrumentação , Enterovirus/química , Vírus de Plantas/química , Ultrafiltração/instrumentação
3.
Nat Prod Res ; 31(16): 1930-1934, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28004585

RESUMO

The study about Eugenia dysenterica led to the isolation of 3-acetyl-urs-12-en-28-oic (1), 3-acetyl-olean-12-en-28-oic acid (2) and isoquercetin (3) from the stem barks, and of 3-O-ß-glucopyranosyl-ß-sitosterol (4), methyl 3-hydroxy-4-methoxybenzoate (5), methyl 4-hydroxyphenyl propionate (6), E-methyl-4-hydroxycinnamate (7), quercetin-3-O-(6ꞌꞌ-O-galloyl)-ß-d-glucopyranoside (8) and quercetin-3-O-ß-d-galactopyranoside (9) from the leaves. The structures 1-9 were set through the analysis of their NMR spectroscopic data. Compounds 2, 3 and 5-8 were reported for the first time in the Eugenia genus. Compound 8 reduced cell viability and presented IC50 values 40.3 and 36.7 µM, for the CCRF-CEM and the Kasumi-1 cells, respectively.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Eugenia/química , Leucemia/tratamento farmacológico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Flavonoides/química , Flavonoides/farmacologia , Galactosídeos/química , Galactosídeos/farmacologia , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Ácido Oleanólico/química , Casca de Planta/química , Extratos Vegetais/química , Folhas de Planta/química , Quercetina/análogos & derivados , Quercetina/química , Quercetina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...