Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 153: 88-102, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26499393

RESUMO

Equilibrium and kinetic properties of cyanide and imidazole binding to the heme domains of Sinorhizobium meliloti and Bradyrhizobium japonicum FixL (SmFixLH and BjFixLH) have been investigated between pH5 and 11. KD determinations were made at integral pH values, with the strongest binding at pH9 for both ligands. KD for the cyanide complexes of BjFixLH and SmFixLH is 0.15±0.09 and 0.50±0.20µM, respectively, and 0.70±0.01mM for imido-BjFixLH. The association rate constants are pH dependent with maximum values of 443±8 and 252±61M(-1)s(-1) for cyano complexes of BjFixLH and SmFixLH and (5.0±0.3)×10(4) and (7.0±1.4)×10(4)M(-1)s(-1) for the imidazole complexes. The dissociation rate constants are essentially independent of pH above pH5; (1.2±0.3)×10(-4) and (1.7±0.3)×10(-4)s(-1) for the cyano complexes of BjFixLH and SmFixLH, and (73±19) and (77±14) s(-1) for the imidazole complexes. Two ionizable groups in FixLH affect the rate of ligand binding. The more acidic group, identified as the heme 6 propionic acid, has a pKa of 7.6±0.2 in BjFixLH and 6.8±0.2 in SmFixLH. The second ionization is due to formation of hydroxy-FixLH with pKa values of 9.64±0.05 for BjFixLH and 9.61±0.05 for SmFixLH. Imidazole binding is limited by the rate of heme pocket opening with maximum observed values of 680 and 1270s(-1) for BjFixLH and SmFixLH, respectively.


Assuntos
Proteínas de Bactérias/química , Bradyrhizobium/metabolismo , Cianetos/química , Hemeproteínas/química , Nitroimidazóis/química , Sinorhizobium meliloti/metabolismo , Heme/química , Histidina Quinase , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Ligantes , Mutação Puntual , Ligação Proteica , Domínios Proteicos
2.
Biochemistry ; 54(31): 4845-54, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26212209

RESUMO

Previously, we constructed, expressed, and purified 46 charge-reversal mutants of yeast cytochrome c peroxidase (CcP) and determined their electronic absorption spectra, their reaction with H2O2, and their steady-state catalytic properties [ Pearl , N. M. et al. (2008) Biochemistry 47 , 2766 - 2775 ]. Forty-four of the mutants involve the conversion of either an aspartate or glutamate residue to a lysine residue, while two are positive-to-negative mutations, R31E and K149D. In this paper, we report on a calorimetric study of the interaction of each charge-reversal mutant (excluding the internal mutants D76K and D235K) with recombinant yeast iso-1 ferricytochrome c(C102T) (yCc) under conditions where only one-to-one yCc/CcP complex formation is observed. Thirteen of the 44 surface-site charge-reversal mutants decrease the binding affinity for yCc by a factor of 2 or more. Eight of the 13 mutations (E32K, D33K, D34K, E35K, E118K, E201K, E290K, E291K) occur within, or on the immediate periphery, of the crystallographically defined yCc binding site [ Pelletier , H. and Kraut , J. (1992) Science 258 , 1748 - 1755 ], three of the mutations (D37K, E98K, E209K) are slightly removed from the crystallographic site, and two of the mutations (D165K, D241K) occur on the "back-side" of CcP. The current study is consistent with a model for yCc binding to CcP in which yCc binds predominantly near the region defined by crystallographic structure of the 1:1 yCc-CcP complex, whether as a stable electron-transfer active complex or as part of a dynamic encounter complex.


Assuntos
Citocromo-c Peroxidase/química , Citocromos c/química , Modelos Moleculares , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Cristalografia por Raios X , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Biochim Biophys Acta ; 1854(8): 919-29, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900360

RESUMO

Imidazole binding to three apolar distal heme pocket mutants of yeast cytochrome c peroxidase (CcP) has been investigated between pH4 and 8. The three CcP variants have Arg-48, Trp-51, and His-52 mutated to either all alanine, CcP(triAla), all valine, CcP(triVal), or all leucine residues, CcP(triLeu). The imidazole binding curves for all three mutants are biphasic indicating that each of the mutants exists in at least two conformational states with different affinities for imidazole. At pH7, the high-affinity conformations of the three CcP mutants bind imidazole between 3.8 and 4.7 orders of magnitude stronger than that of wild-type CcP while the low-affinity conformations have binding affinities about 2.5 orders of magnitude larger than wild-type CcP. Imidazole binding to the three CcP mutants is pH dependent with the strongest binding observed at high pH. Apparent pK(a) values for the transition in binding vary between 5.6 and 7.5 for the high-affinity conformations and between 6.2 and 6.8 for the low-affinity conformations of the CcP triple mutants. The kinetics of imidazole binding are also biphasic. The fast phase of imidazole binding to CcP(triAla) and CcP(triLeu) is linearly dependent on the imidazole concentration while the slow phase is independent of imidazole concentration. Both phases of imidazole binding to CcP(triVal) have a hyperbolic dependence on the imidazole concentration. The apparent association rate constants vary between 30 and 170 M(-1)s(-1) while the apparent dissociation rate constants vary between 0.05 and 0.43 s(-1). The CcP triple mutants have higher binding affinities for 1-methylimidazole and 4-nitroimidazole than does wild-type CcP.


Assuntos
Citocromo-c Peroxidase/química , Imidazóis/química , Mutação , Nitroimidazóis/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Citocromo-c Peroxidase/genética , Concentração de Íons de Hidrogênio , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Biochim Biophys Acta ; 1854(8): 869-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25907133

RESUMO

Imidazole, 1-methylimidazole and 4-nitroimidazole bind to yeast cytochrome c peroxidase (yCcP) with apparent equilibrium dissociation constants (KD(app)) of 3.3±0.4, 0.85±0.11, and ~0.2M, respectively, at pH7. This is the weakest imidazole binding to a heme protein reported to date and it is about 120 times weaker than imidazole binding to metmyoglobin. Spectroscopic changes associated with imidazole and 1-methylimidazole binding to yCcP suggest partial ionization of bound imidazole to imidazolate. The pKa for ionization of bound imidazole is estimated to be 7.4±0.2, about 7 units lower than that of free imidazole and about 3 units lower than imidazole bound to metmyoglobin. Equilibrium binding of imidazole to CcP(H52L) is biphasic with low- and high-affinity phases having KD(app) values of 9.5±4.5 and 0.13±0.04M, respectively. CcP(H52L) binding of 1-methylimidazole is monophasic with an affinity similar to those of yCcP and rCcP. Binding of 1-methylimidazole to rCcP is associated with two kinetic phases, the initial binding complete within 10s, followed by a process that is consistent with 1-methylimidazole binding to a cavity created by movement of Trp-191 from the interior of the protein to the surface. Both the equilibrium binding and kinetics of 1-methylimidazole binding to yCcP are pH dependent. yCcP has a four-fold increase in 1-methylimidazole binding affinity on decreasing the pH from 7.5 to 4.0, an observation that is unique among the many studies on binding of imidazole and imidazole derivatives to heme proteins.


Assuntos
Citocromo-c Peroxidase/química , Imidazóis/química , Mutação de Sentido Incorreto , Nitroimidazóis/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Concentração de Íons de Hidrogênio , Imidazóis/metabolismo , Nitroimidazóis/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Biochem Biophys Res Commun ; 443(1): 200-4, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24291498

RESUMO

Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32±0.16 M(-1) s(-1) and 0.34±0.15 s(-1), respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1±0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a "peroxygenase"-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min(-1) at pH 6.0.


Assuntos
Acrilonitrila/química , Citocromo-c Peroxidase/química , Animais , Hemeproteínas/química , Cinética , Microssomos Hepáticos/enzimologia , Oxirredução , Ratos , Saccharomyces cerevisiae/enzimologia
6.
BMC Biochem ; 14: 19, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23895311

RESUMO

BACKGROUND: The cytochrome P450s are monooxygenases that insert oxygen functionalities into a wide variety of organic substrates with high selectivity. There is interest in developing efficient catalysts based on the "peroxide shunt" pathway in the cytochrome P450s, which uses H2O2 in place of O2/NADPH as the oxygenation agent. We report on our initial studies using cytochrome c peroxidase (CcP) as a platform to develop specific "peroxygenation" catalysts. RESULTS: The peroxygenase activity of CcP was investigated using 1-methoxynaphthalene as substrate. 1-Methoxynaphthalene hydroxylation was monitored using Russig's blue formation at standard reaction conditions of 0.50 mM 1-methoxynaphthalene, 1.00 mM H2O2, pH 7.0, 25°C. Wild-type CcP catalyzes the hydroxylation of 1-methoxynaphthalene with a turnover number of 0.0044 ± 0.0001 min-1. Three apolar distal heme pocket mutants of CcP were designed to enhance binding of 1-methoxynaphthalene near the heme, constructed, and tested for hydroxylation activity. The highest activity was observed for CcP(triAla), a triple mutant with Arg48, Trp51, and His52 simultaneously mutated to alanine residues. The turnover number of CcP(triAla) is 0.150 ± 0.008 min-1, 34-fold greater than wild-type CcP and comparable to the naphthalene hydroxylation activity of rat liver microsomal cytochrome P450. While wild-type CcP is very stable to oxidative degradation by excess hydrogen peroxide, CcP(triAla) is inactivated within four cycles of the peroxygenase reaction. CONCLUSIONS: Protein engineering of CcP can increase the rate of peroxygenation of apolar substrates but the initial constructs are more susceptible to oxidative degradation than wild-type enzyme. Further developments will require constructs with increased rates and selectivity while maintaining the stability of wild-type CcP toward oxidative degradation by hydrogen peroxide.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Heme/metabolismo , Naftalenos/metabolismo , Animais , Citocromo-c Peroxidase/química , Heme/química , Hidroxilação , Cinética , Microssomos Hepáticos/enzimologia , Mutagênese Sítio-Dirigida , Naftalenos/química , Engenharia de Proteínas , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
7.
Biochim Biophys Acta ; 1834(1): 137-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23022490

RESUMO

Three yeast cytochrome c peroxidase (CcP) variants with apolar distal heme pockets have been constructed. The CcP variants have Arg48, Trp51, and His52 mutated to either all alanines, CcP(triAla), all valines, CcP(triVal), or all leucines, CcP(triLeu). The triple mutants have detectable enzymatic activity at pH 6 but the activity is less than 0.02% that of wild-type CcP. The activity loss is primarily due to the decreased rate of reaction between the triple mutants and H(2)O(2) compared to wild-type CcP. Spectroscopic properties and cyanide binding characteristics of the triple mutants have been investigated over the pH stability region of CcP, pH 4 to 8. The absorption spectra indicate that the CcP triple mutants have hemes that are predominantly five-coordinate, high-spin at pH 5 and six-coordinate, low-spin at pH 8. Cyanide binding to the triple mutants is biphasic indicating that the triple mutants have two slowly-exchanging conformational states with different cyanide affinities. The binding affinity for cyanide is reduced at least two orders of magnitude in the triple mutants compared to wild-type CcP and the rate of cyanide binding is reduced by four to five orders of magnitude. Correlation of the reaction rates of CcP and 12 distal pocket mutants with H(2)O(2) and HCN suggests that both reactions require ionization of the reactants within the distal heme pocket allowing the anion to bind the heme iron. Distal pocket features that promote substrate ionization (basic residues involved in base-catalyzed substrate ionization or polar residues that can stabilize substrate anions) increase the overall rate of reaction with H(2)O(2) and HCN while features that inhibit substrate ionization slow the reactions.


Assuntos
Cianetos/química , Citocromo-c Peroxidase/química , Peróxido de Hidrogênio/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Cianetos/metabolismo , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Fluorescência
8.
Biochim Biophys Acta ; 1814(5): 525-35, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21354339

RESUMO

To test the effect of alternative bases at the distal histidine position, four CcP variants have been constructed that substitute the two basic residues, aspartate and glutamate, and their amides, asparagine and glutamine, for histidine-52, i.e., CcP(H52D), CcP(H52E), CcP(H52N), and CcP(H52Q). All four mutants catalyze oxidation of ferrocytochrome c by H(2)O(2) with steady-state activities that are between 250 and 7700 times slower than wild-type CcP at pH 6.0, 0.10M ionic strength, 25°C. The rate of Compound I formation is decreased between 3.5 and 5.4 orders of magnitude for the mutants compared to wild-type CcP, with the rate of the reaction between CcP(H52Q) and H(2)O(2) the slowest yet observed for any CcP mutant. A correlation between the rate of Compound I formation and the rate of HCN binding for CcP and various CcP distal pocket mutants provides strong evidence that the rate-limiting step in CcP Compound I formation is deprotonation of H(2)O(2) within the distal heme pocket under the experimental conditions employed in this study. While CcP(H52E) reacts stoichiometrically with H(2)O(2) to form Compound I, only ~36% of CcP(H52D), ~21% of CcP(H52Q) and ~8% of CcP(H52N) appear to be converted to Compound I during their respective reactions with H(2)O(2). This is partially due to the slow rate of Compound I formation and the rapid endogenous decay of Compound I for these mutants. The pathways for the endogenous decay of Compound I for the four mutants used in this study are distinct from that of wild-type CcP Compound I.


Assuntos
Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/metabolismo , Citocromo-c Peroxidase/genética , Citocromos c/metabolismo , Histidina/genética , Histidina/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Oxirredução , Relação Estrutura-Atividade
9.
J Inorg Biochem ; 105(4): 532-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21334283

RESUMO

The pH dependence of the Fe(III) reduction potential, E(0)', for yeast cytochrome c peroxidase (yCcP) and three distal pocket mutants, CcP(H52L), CcP(H52Q), and CcP(R48L/W51L/H52L), has been determined between pH 4 and 8. E(0)' values at pH 7.0 for the yCcP, CcP(H52L), CcP(H52Q), and CcP(R48L/W51L/H52L) are -189, -170, -224, and -146mV, respectively. A heme-linked ionization in the reduced enzyme affects the reduction potential for yCcP and all three mutants. Apparent pK(A) values for the heme-linked ionization are 7.5±0.2, 6.5±0.3, 6.4±0.2, and 7.0±0.3 for yCcP and the H52L, H52Q, and R48L/W51L/H52L mutants, respectively. A cooperative, two-proton ionization causing a spectroscopically-detectable transition was observed in the ferrous states of yCcP, CcP(H52L) and CcP(H52Q), with apparent pK(A) values of 7.7±0.2, 7.4±0.1 and 7.8±0.1, respectively. These data indicate that: (1) the distal histidine in CcP is not the site of proton binding upon reduction of the ferric CcP, (2) the distal histidine is not one of the two groups involved in the cooperative, two-proton ionization observed in ferrous CcP, and (3) the proton-binding site is not involved in the cooperative, two-proton ionization observed in the reduced enzyme.


Assuntos
Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/genética , Histidina/química , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Citocromo-c Peroxidase/metabolismo , Heme/química , Heme/metabolismo , Histidina/genética , Concentração de Íons de Hidrogênio , Cinética , Mutação , Saccharomyces cerevisiae/metabolismo
10.
Biochemistry ; 48(23): 5417-25, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19388664

RESUMO

Many heme proteins have distal histidine residues that play important roles in determining heme protein reactivity. These distal histidines are in significantly different orientations,and distances from the heme iron in different heme proteins and the position of the distal histidine relative to the heme iron can influence reactivity at the heme center. To explore the effect of distal histidine position on the properties of cytochrome c peroxidase (CcP), three CcP mutants in which tryptophan 51 was replaced with a histidine residue were constructed. All three mutants, CcP(W51H), CcP(W51H/H52W), and CcP(W51H/H52L), have altered electronic absorption spectra, indicating that the heme group in the mutants is six-coordinate rather than five-coordinate as it is in wild-type CcP. The hydrogen peroxide reaction rate is 56-6200-fold slower for the mutants than for wild-type CcP. All three mutants form a CcP Compound I-like intermediate, in which the Fe(IV) site decays between 500 and 3000 times more rapidly than the Fe(IV) site in wild-type CcP Compound I. The W51H mutations have a weaker effect on cyanide binding, with the cyanide affinity only 2-8 times weaker than for CcP. The cyanide association rate constants are between 5 and 85 times slower for the W51H mutants, while the cyanide dissociation rate constants range from 3 times slower to 6 times faster than those of wild-type CcP.


Assuntos
Citocromo-c Peroxidase/química , Histidina/genética , Cianetos/metabolismo , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Histidina/química , Peróxido de Hidrogênio/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica
11.
Biochemistry ; 47(9): 2766-75, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18232645

RESUMO

Forty-six charge-reversal mutants of yeast cytochrome c peroxidase (CcP) have been constructed in order to determine the effect of localized charge on the catalytic properties of the enzyme. The mutants include the conversion of all 20 glutamate residues and 24 of the 25 aspartate residues in CcP, one at a time, to lysine residues. In addition, two positive-to-negative charge-reversal mutants, R31E and K149D, are included in the study. The mutants have been characterized by absorption spectroscopy and hydrogen peroxide reactivity at pH 6.0 and 7.5 and by steady-state kinetic studies using recombinant yeast iso-1 ferrocytochrome c (C102T) as substrate at pH 7.5. Many of the charge-reversal mutations cause detectable changes in the absorption spectrum of the enzyme reflecting increased amounts of hexacoordinate heme compared to wild-type CcP. The increase in hexacoordinate heme in the mutant enzymes correlates with an increase in H 2O 2-inactive enzyme. The maximum velocity of the mutants decreases with increasing hexacoordination of the heme group. Steady-state velocity studies indicate that 5 of the 46 mutations (R31E, D34K, D37K, E118K, and E290K) cause large increases in the Michaelis constant indicating a reduced affinity for cytochrome c. Four of the mutations occur within the cytochrome c binding site identified in the crystal structure of the 1:1 complex of yeast cytochrome c and CcP [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] while the fifth mutation site lies outside, but near, the crystallographic site. These data support the hypothesis that the CcP has a single, catalytically active cytochrome c binding domain, that observed in the crystal structures of the cytochrome c/CcP complex.


Assuntos
Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/metabolismo , Leveduras/enzimologia , Sítios de Ligação , Catálise , Citocromo-c Peroxidase/genética , Citocromos c/química , Citocromos c/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Estrutura Terciária de Proteína , Espectrofotometria , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
12.
Biochemistry ; 46(28): 8263-72, 2007 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-17580971

RESUMO

Fifteen single-site charge-reversal mutations of yeast cytochrome c peroxidase (CcP) have been constructed to determine the effect of localized charge on the catalytic properties of the enzyme. The mutations are located on the front face of CcP, near the cytochrome c binding site identified in the crystallographic structure of the yeast cytochrome c-CcP complex [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755]. The mutants are characterized by absorption spectroscopy and hydrogen peroxide reactivity at both pH 6.0 and 7.5 and by steady-state kinetic studies using recombinant yeast iso-1-ferrocytochrome c(C102T) as a substrate at pH 7.5. Some of the charge-reversal mutations cause detectable changes in the absorption spectrum, especially at pH 7.5, reflecting changes in the equilibrium between penta- and hexacoordinate heme species in the enzyme. An increase in the amount of hexacoordinate heme in the mutant enzymes correlates with an increase in the fraction of enzyme that does not react with hydrogen peroxide. Steady-state velocity measurements indicate that five of the 15 mutations cause large increases in the Michaelis constant (R31E, D34K, D37K, E118K, and E290K). These data support the hypothesis that the cytochrome c-CcP complex observed in the crystal is the dominant catalytically active complex in solution.


Assuntos
Citocromo-c Peroxidase/química , Citocromos c/química , Proteínas Fúngicas/química , Sítios de Ligação , Catálise , Citocromo-c Peroxidase/genética , Proteínas Fúngicas/genética , Peróxido de Hidrogênio/química , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Espectrometria de Fluorescência
13.
J Inorg Biochem ; 101(4): 603-13, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17275914

RESUMO

The reduction potentials of 22 yeast cytochrome c peroxidase (CcP) mutants were determined at pH 7.0 in order to determine the effect of both heme pocket and surface mutations on the Fe(III)/Fe(II) redox couple of CcP, as well as to determine the range in redox potentials that could be obtained through point mutations in the enzyme. Spectroscopic properties of the Fe(III) and Fe(II) forms of the mutant enzymes are also reported. The mutations include variants in the distal and proximal heme pockets as well as on the enzyme surface and involve single, double, and triple point mutations. A spectrochemical redox titration technique used in this study gave an E(0') value of -189 mV for yeast CcP compared to a previously reported value of -194 mV determined by potentiometry [C.W. Conroy, P. Tyma, P.H. Daum, J.E. Erman, Biochim. Biophys. Acta 537 (1978) 62-69]. Both positive and negative shifts in the reduction potential from that of the wild-type enzyme were observed, spanning a range of 113 mV. The His-52-->Asn mutation gave the most negative potential, -259 mV, while a triple mutant in which the three distal pocket residues, Arg-48, Trp-51, and His-52, were all converted to leucine residues gave the most positive potential, -146 mV.


Assuntos
Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/metabolismo , Mutação , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Domínio Catalítico , Citocromo-c Peroxidase/genética , Compostos Férricos/química , Compostos Ferrosos/química , Heme/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Oxirredução , Mutação Puntual , Análise Espectral , Relação Estrutura-Atividade
14.
Biochemistry ; 45(48): 14371-8, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17128976

RESUMO

Four covalent complexes between recombinant yeast cytochrome c and cytochrome c peroxidase (rCcP) were synthesized via disulfide bond formation using specifically designed protein mutants (Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580). One of the complexes, designated V5C/K79C, has cysteine residues replacing valine-5 in rCcP and lysine-79 in cytochrome c with disulfide bond formation between these residues linking the two proteins. The V5C/K79C complex has the covalently bound cytochrome c located on the back-side of cytochrome c peroxidase, approximately 180 degrees from the primary cytochrome c-binding site as defined by the crystallographic structure of the 1:1 noncovalent complex (Pelletier, H., and Kraut J. (1992) Science 258, 1748-1755). Three other complexes have the covalently bound cytochrome c located approximately 90 degrees from the primary binding site and are designated K12C/K79C, N78C/K79C, and K264C/K79C, respectively. Steady-state kinetic studies were used to investigate the catalytic properties of the covalent complexes at both 10 and 100 mM ionic strength at pH 7.5. All four covalent complexes have catalytic activities similar to those of rCcP (within a factor of 2). A comprehensive study of the ionic strength dependence of the steady-state kinetic properties of the V5C/K79C complex provides evidence for significant electrostatic repulsion between the two cytochromes bound in the 2:1 complex at low ionic strength and shows that the electrostatic repulsion decreases as the ionic strength of the buffer increases.


Assuntos
Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Citocromo-c Peroxidase/genética , Citocromos c/genética , Cinética , Modelos Moleculares , Mutação/genética , Concentração Osmolar , Oxirredução , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
15.
Biochemistry ; 45(32): 9887-93, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16893189

RESUMO

A covalent complex between recombinant yeast iso-1-cytochrome c and recombinant yeast cytochrome c peroxidase (rCcP), in which the crystallographically defined cytochrome c binding site [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] is blocked, was synthesized via disulfide bond formation using specifically engineered cysteine residues in both yeast iso-1-cytochrome c and yeast cytochrome c peroxidase [Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580]. Previous studies on similar covalent complexes, those that block the Pelletier-Kraut crystallographic site, have demonstrated that samples of the covalent complexes have detectable activities that are significantly lower than those of wild-type yCcP, usually in the range of approximately 1-7% of that of the wild-type enzyme. Using gradient elution procedures in the purification of the engineered peroxidase, cytochrome c, and covalent complex, along with activity measurements during the purification steps, we demonstrate that the residual activity associated with the purified covalent complex is due to unreacted CcP that copurifies with the covalent complex. Within experimental error, the covalent complex that blocks the Pelletier-Kraut site has zero catalytic activity in the steady-state oxidation of exogenous yeast iso-1-ferrocytochrome c by hydrogen peroxide, demonstrating that only ferrocytochrome c bound at the Pelletier-Kraut site is oxidized during catalytic turnover.


Assuntos
Citocromo-c Peroxidase/metabolismo , Citocromos c/metabolismo , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Catálise , Citocromo-c Peroxidase/isolamento & purificação , Citocromos c/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Cinética , Mutação/genética , Ligação Proteica
16.
Biochemistry ; 43(17): 5065-72, 2004 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-15109265

RESUMO

Replacement of the distal histidine, His-52, in cytochrome c peroxidase (CcP) with a lysine residue produces a mutant cytochrome c peroxidase, CcP(H52K), with spectral and kinetic properties significantly altered compared to those of the wild-type enzyme. Three spectroscopically distinct forms of the enzyme are observed between pH 4.0 and 8.0 with two additional forms, thought to be partially denatured forms, making contributions to the observed spectra at the pH extremes. CcP(H52K) exists in at least three, slowly interconverting conformational states over most of the pH range that was investigated. The side chain epsilon-amino group of Lys-52 has an apparent pK(a) of 6.4 +/- 0.2, and the protonation state of Lys-52 affects the spectral properties of the enzyme and the reactions with both hydrogen peroxide and HCN. In its unprotonated form, Lys-52 acts as a base catalyst facilitating the reactions of both hydrogen peroxide and HCN with CcP(H52K). The major form of CcP(H52K) reacts with hydrogen peroxide with a rate approximately 50 times slower than that of wild-type CcP but reacts with HCN approximately 3 times faster than does the wild-type enzyme. The major form of the mutant enzyme has a higher affinity for HCN than does native CcP.


Assuntos
Cianetos/metabolismo , Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Substituição de Aminoácidos , Citocromo-c Peroxidase/genética , Heme/química , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Lisina/metabolismo , Mutação Puntual , Conformação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Prótons , Análise Espectral
17.
Arch Biochem Biophys ; 422(2): 125-36, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14759599

RESUMO

Yeast cytochrome c peroxidase (CcP) and horse metmyoglobin (Mb) bind HN3 with similar affinities at 25 degrees C. The pH-independent equilibrium association constants for formation of the CcP.HN3 and Mb.HN3 complexes are (1.05 +/- 0.06)x10(5) and (1.6 +/- 0.8)x10(5) M(-1), respectively. However, the thermodynamic parameters for formation of the two complexes are quite different. The DeltaH0 values for formation of CcP.HN3 and Mb.HN3 are -16.4 +/- 0.7 and -9.0 +/- 0.5 kcal/mol, respectively, and the Delta S0 values are -32 +/- 2 and -16 +/- 2 cal/deg mol, respectively. The proton associated with HN3 is retained in both protein complexes at low pH but dissociates with apparent pKA values of 5.5 +/- 0.2 and > or =8.2 for the Mb.HN3 and CcP.HN3 complexes, respectively. CcP and Mb differ significantly in their reactivity toward the azide anion, N3-. CcP binds N3- very weakly, if at all, and only an upper-limit of 18 +/-5 M(-1) for the pH-independent equilibrium association constant for the CcP.N3- complex can be determined. Mb binds N3- with an association constant of (1.8 +/- 0.1)x10(4) M(-1). The ratio of the equilibrium association constants for HN3 and N3- binding provides a discrimination factor between the neutral and charged forms of the ligand. The discrimination factor is greater than 5800 for CcP but only nine for Mb. Protonation of the distal histidines in the two proteins influences binding of HN3. Protonation of His-64 in Mb enhances HN3 binding due to a gating mechanism while protonation of His-52 in CcP decreases the affinity for HN3 due to loss of base-assisted association of the ligand to the heme iron.


Assuntos
Azidas/metabolismo , Citocromo-c Peroxidase/metabolismo , Metamioglobina/metabolismo , Saccharomyces cerevisiae/enzimologia , Animais , Soluções Tampão , Calorimetria/métodos , Citocromo-c Peroxidase/química , Cavalos , Concentração de Íons de Hidrogênio , Cinética , Metamioglobina/química , Ligação Proteica , Saccharomyces cerevisiae/genética , Espectrofotometria/métodos , Termodinâmica , Titulometria
18.
Biochemistry ; 42(36): 10764-71, 2003 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-12962501

RESUMO

Cyanide binding to a cytochrome c peroxidase (CcP) variant in which the distal histidine has been replaced by a leucine residue, CcP(H52L), has been investigated as a function of pH using spectroscopic, equilibrium, and kinetic methods. Between pH 4 and 8, the apparent equilibrium dissociation constant for the CcP(H52L)/cyanide complex varies by a factor of 60, from 135 microM at pH 4.7 to 2.2 microM at pH 8.0. The binding kinetics are biphasic, involving bimolecular association of the two reactants, followed by an isomerization of the enzyme/cyanide complex. The association rate constant could be determined up to pH 8.9 using pH-jump techniques. The association rate constant increases by almost 4 orders of magnitude over the pH range investigated, from 1.8 x 10(2) M(-1) s(-1) at pH 4 to 9.2 x 10(5) M(-1) s(-1) at pH 8.6. In contrast to wild-type CcP, where the binding of HCN is the dominant binding pathway, CcP(H52L) preferentially binds the cyanide anion. Above pH 8, cyanide binding to CcP(H52L) is faster than cyanide binding to wild-type CcP. Cyanide dissociates 4 times slower from the mutant protein although the pH dependence of the dissociation rate constant is essentially identical for CcP(H52L) and CcP. Isomerization of the CcP(H52L)/cyanide complex is observed between pH 4 and 8 and stabilizes the complex. The isomerization rate constant has a similar magnitude and pH dependence as the cyanide dissociation rate constant, and the two reactions are coupled at low cyanide concentrations. This isomerization has no counterpart in the wild-type CcP/cyanide complex.


Assuntos
Cianetos/metabolismo , Citocromo-c Peroxidase/metabolismo , Substituição de Aminoácidos , Citocromo-c Peroxidase/genética , Histidina/genética , Concentração de Íons de Hidrogênio , Isomerismo , Cinética , Leucina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrofotometria Ultravioleta/métodos , Titulometria
19.
Biochim Biophys Acta ; 1597(2): 193-220, 2002 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12044899

RESUMO

Cytochrome c peroxidase (CcP) is a yeast mitochondrial enzyme that catalyzes the reduction of hydrogen peroxide to water by ferrocytochrome c. It was the first heme enzyme to have its crystallographic structure determined and, as a consequence, has played a pivotal role in developing ideas about structural control of heme protein reactivity. Genetic engineering of the active site of CcP, along with structural, spectroscopic, and kinetic characterization of the mutant proteins has provided considerable insight into the mechanism of hydrogen peroxide activation, oxygen-oxygen bond cleavage, and formation of the higher-oxidation state intermediates in heme enzymes. The catalytic mechanism involves complex formation between cytochrome c and CcP. The cytochrome c/CcP system has been very useful in elucidating the complexities of long-range electron transfer in biological systems, including protein-protein recognition, complex formation, and intracomplex electron transfer processes.


Assuntos
Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/metabolismo , Saccharomyces cerevisiae/enzimologia , Domínio Catalítico/genética , Grupo dos Citocromos c/metabolismo , Citocromo-c Peroxidase/genética , Transporte de Elétrons , Ativação Enzimática/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Cinética , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Engenharia de Proteínas , Rutênio/química , Saccharomyces cerevisiae/genética , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...