RESUMO
BACKGROUND: Balance impairments in people with Parkinson's disease (PD) demonstrated mainly in challenging postural tasks, such as increased body oscillation may be attributed to the deficits in the brain structures functionality involved in postural control (e.g., motor cortex, midbrain, and brainstem). Although promising results, the effect of transcranial direct current stimulation (tDCS) on postural control in people with PD is unclear, especially in objective measures such as the center of pressure (CoP) parameters. Thus, we analyzed the effects of a single session of tDCS on the CoP parameters during the adapted tandem position in people with PD. METHODS: Nineteen people with PD participated in this crossover, randomized, and double-blind study. Anodal tDCS was applied over the primary motor cortex in two conditions of stimulation (2 mA/active and sham) on two different days for 20 min immediately before the postural control evaluation. Participants remained standing in an adapted tandem position for the postural control assessment for 30 s (three trials). CoP parameters were acquired by a force plate. RESULTS: No significant differences were demonstrated between stimulation conditions (p-value range = 0.15-0.89). CONCLUSIONS: Our results suggested that a single session of tDCS with 2 mA does not improve the postural control of people with PD during adapted tandem.
Assuntos
Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Projetos Piloto , Doença de Parkinson/terapia , Equilíbrio Postural/fisiologia , Método Duplo-CegoRESUMO
The neural correlates of locomotion impairments observed in people with Parkinson's disease (PD) are not fully understood. We investigated whether people with PD present distinct brain electrocortical activity during usual walking and the approach phase of obstacle avoidance when compared to healthy individuals. Fifteen people with PD and fourteen older adults walked overground in two conditions: usual walking and obstacle crossing. Scalp electroencephalography (EEG) was recorded using a mobile 64-channel EEG system. Independent components were clustered using a k-means clustering algorithm. Outcome measures included absolute power in several frequency bands and alpha/beta ratio. During the usual walk, people with PD presented a greater alpha/beta ratio in the left sensorimotor cortex than healthy individuals. While approaching obstacles, both groups reduced alpha and beta power in the premotor and right sensorimotor cortices (balance demand) and increased gamma power in the primary visual cortex (visual demand). Only people with PD reduced alpha power and alpha/beta ratio in the left sensorimotor cortex when approaching obstacles. These findings suggest that PD affects the cortical control of usual walking, leading to a greater proportion of low-frequency (alpha) neuronal firing in the sensorimotor cortex. Moreover, the planning for obstacle avoidance changes the electrocortical dynamics associated with increased balance and visual demands. People with PD rely on increased sensorimotor integration to modulate locomotion.
Assuntos
Doença de Parkinson , Córtex Sensório-Motor , Humanos , Idoso , Caminhada , Locomoção , AlgoritmosRESUMO
Introdução: os comprometimentos do andar em idosos com doença de Parkinson (DP) estão associados à elevada ocorrência de quedas e à redução dos níveis de independência. O objetivo do estudo foi comparar a resposta dos parâmetros do andar em idosos com doença de Parkinson (DP), durante, imediatamente após e até uma hora após o término de uma sessão de treinamento do andar com e sem dicas auditivas rítmicas, utilizando três ritmos diferentes para o grupo dica (10% abaixo da cadência preferida, cadência preferida e 10% acima) e um ritmo diferente para o grupo controle (velocidade usual de cada participante). Métodos: vinte e nove idosos foram aleatoriamente distribuídos em dois grupos: "controle" e "dica". As sessões de intervenção tiveram 30 minutos de duração e a diferença entre os grupos foi a utilização de dicas auditivas rítmicas oferecidas por um metrônomo no grupo dica. O andar foi avaliado antes, durante e até uma hora após a sessão de intervenção. Resultados: os grupos apresentaram desempenhos similares ao longo das avaliações, com aumento do comprimento do passo e redução da variabilidade da duração do passo. Conclusão: a sessão de intervenção com dicas auditivas rítmicas apresentou efeitos similares aos da sessão de treino sem dica para o andar de idosos com DP.(AU)
Introduction: Gait impairments in older people with Parkinson's disease (PD) are associated with a high occurrence of falls and reduced levels of patients' independence. The objective of the study was to compare the response of gait parameters in older people with Parkinson's disease (PD), during, immediately after, and up to 1h after the end of a single locomotion training session with and without rhythmic auditory cues, using 3 different rhythms for the tip group (10% below the preferred cadence, preferred cadence and 10% above) and 1 different rhythm for the control group (usual speed of each participant). Materials and method: 29 older people were randomly assigned to two groups: Control and "Cue". The intervention sessions lasted 30 minutes and the difference between the groups was the use of rhythmic auditory cues offered by a metro-nome in the Cue group. Gait was assessed before, during, and up to 1 hour after the intervention session. Results: The groups showed similar performances throughout the assessments, with increased step length and reduced step time variability in response to the intervention (compared to the baseline assessment). Conclusion: The intervention session with rhythmic auditory cues had similar effects on gait as the session without cues in older people with PD.(AU)
Assuntos
Masculino , Feminino , Idoso , Idoso de 80 Anos ou mais , Doença de Parkinson , Envelhecimento , Doenças Neurodegenerativas , LocomoçãoRESUMO
Postural instability is common in neurological diseases. Although transcranial direct current stimulation (tDCS) seems to be a promising complementary therapy, emerging evidence indicates mixed results and protocols' characteristics. We conducted a systematic review and meta-analysis on PubMed, EMBASE, Scopus, and Web of Science to synthesize key findings of the effectiveness of single and multiple sessions of tDCS alone and combined with other interventions on balance in adults with neurological disorders. Thirty-seven studies were included in the systematic review and 33 in the meta-analysis. The reviewed studies did not personalize the stimulation protocol to individual needs/characteristics. A random-effects meta-analysis indicated that tDCS alone (SMD = -0.44; 95%CI = -0.69/-0.19; p < 0.001) and combined with another intervention (SMD = -0.31; 95%CI = -0.51/-0.11; p = 0.002) improved balance in adults with neurological disorders (small to moderate effect sizes). Balance improvements were evidenced regardless of the number of sessions and targeted area. In summary, tDCS is a promising therapy for balance rehabilitation in adults with neurological disorders. However, further clinical trials should identify factors that influence responsiveness to tDCS for a more tailored approach, which may optimize the clinical use of tDCS.
Assuntos
Doenças do Sistema Nervoso , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Atividades Cotidianas , Humanos , Doenças do Sistema Nervoso/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Transcraniana por Corrente Contínua/métodosRESUMO
INTRODUCTION: Transcranial direct current stimulation (tDCS) improves postural response to perturbation in patients with Parkinson's disease (PwPD). However, the influence of baseline characteristics such as clinical/cognitive and postural performance on the response to tDCS remains unclear. OBJECTIVE: To investigate whether baseline level of postural control (performance during sham condition) and clinical/cognitive characteristics are associated with tDCS-related changes in postural responses to external perturbations in PwPD. METHODS: Twenty-four PwPD participated in this study. Clinical assessment included disease severity, disease duration, levodopa equivalent dose and global cognition. Anodal tDCS protocols targeting the primary motor cortex were applied in two separate sessions (at least 2 weeks apart): active (2 mA for 20 min) and sham stimulation. Seven trials with the backward translation of the support base (20 cm/s and 5 cm) were performed after tDCS. Postural outcomes included the recovery time to stable position and onset latency of the medial gastrocnemius (MG). Pearson and Spearman correlation tests were performed. RESULTS: No significant correlations were observed between clinical/cognitive characteristics and tDCS-related changes in postural responses. Negative associations were observed between the baseline level of postural control and tDCS-related changes in postural responses for the recovery time (r = -0.657; p < 0.001) and the MG onset latency (rs = -0.539; p = 0.007). PwPD with worse baseline postural control demonstrated greater improvement after active stimulation. CONCLUSIONS: Findings suggest that tDCS-related effects on postural response to perturbation are related to the baseline level of postural control, but not to clinical characteristics in PwPD. Those with worse baseline postural control responded better to tDCS.
Assuntos
Eletromiografia/estatística & dados numéricos , Doença de Parkinson/cirurgia , Equilíbrio Postural , Estimulação Transcraniana por Corrente Contínua/estatística & dados numéricos , Idoso , Cognição , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Período Pré-Operatório , Resultado do TratamentoRESUMO
Age-related changes may affect the performance during fast walking speed. Although, several studies have been focused on the contribution of the prefrontal cortex (PFC) during challenging walking tasks, the neural mechanism underling fast walking speed in older people remain poorly understood. Therefore, the aim of this study was to investigate the influence of aging on PFC activity during overground walking at preferred and fast speeds. Twenty-five older adults (67.37 ± 5.31 years) and 24 young adults (22.70 ± 1.30 years) walked overground in two conditions: preferred speed and fast walking speed. Five trials were performed for each condition. A wireless functional near-infrared spectroscopy (fNIRS) system measured PFC activity. Gait parameters were evaluated using the GAITRite system. Overall, older adults presented higher PFC activity than young adults in both conditions. Speed-related change in PFC activity was observed for older adults, but not for young adults. Older adults significantly increased activity in the left PFC from the preferred to fast walking condition whereas young adults had similar levels of PFC activity across conditions. Our findings suggest that older adults need to recruit additional prefrontal cognitive resources to control walking, indicating a compensatory mechanism. In addition, left PFC seems to be involved in the modulation of gait speed in older adults.
Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Caminhada , Idoso , Marcha , Humanos , Córtex Pré-Frontal , Velocidade de Caminhada , Adulto JovemRESUMO
BACKGROUND: Since people with Parkinson disease (PD) rely on limited prefrontal executive resources for the control of gait, interventions targeting the prefrontal cortex (PFC) may help in managing PD-related gait impairments. Transcranial direct current stimulation (tDCS) can be used to modulate PFC excitability and improve prefrontal cognitive functions and gait. OBJECTIVE: We investigated the effects of adding anodal tDCS applied over the PFC to a session of aerobic exercise on gait, cognition, and PFC activity while walking in people with PD. METHODS: A total of 20 people with PD participated in this randomized, double-blinded, sham-controlled crossover study. Participants attended two 30-minute sessions of aerobic exercise (cycling at moderate intensity) combined with different tDCS conditions (active- or sham-tDCS), 1 week apart. The order of sessions was counterbalanced across the sample. Anodal tDCS (2 mA for 20 minutes [active-tDCS] or 10 s [sham-tDCS]) targeted the PFC in the most affected hemisphere. Spatiotemporal gait parameters, cognitive functions, and PFC activity while walking were assessed before and immediately after each session. RESULTS: Compared with the pre-assessment, participants decreased step time variability (effect size: -0.4), shortened simple and choice reaction times (effect sizes: -0.73 and -0.57, respectively), and increased PFC activity in the stimulated hemisphere while walking (effect size: 0.54) only after aerobic exercise + active-tDCS. CONCLUSION: The addition of anodal tDCS over the PFC to a session of aerobic exercise led to immediate positive effects on gait variability, processing speed, and executive control of walking in people with PD.
Assuntos
Cognição/fisiologia , Exercício Físico/fisiologia , Marcha/fisiologia , Doença de Parkinson/terapia , Córtex Pré-Frontal/fisiopatologia , Estimulação Transcraniana por Corrente Contínua , Idoso , Estudos Cross-Over , Método Duplo-Cego , Feminino , Neuroimagem Funcional , Humanos , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Córtex Pré-Frontal/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho , Resultado do Tratamento , Caminhada/fisiologiaRESUMO
BACKGROUND: Dopaminergic medication improves gait in people with Parkinson disease (PD). However, it remains unclear if dopaminergic medication modulates cortical activity while walking. OBJECTIVE: We investigated the effects of dopaminergic medication on cortical activity during unobstructed walking and obstacle avoidance in people with PD. METHODS: A total of 23 individuals with PD, in both off (PDOFF) and on (PDON) medication states, and 30 healthy older adults (control group [CG]) performed unobstructed walking and obstacle avoidance conditions. Cortical activity was acquired through a combined functional near-infrared spectroscopy electroencephalography (EEG) system, along with gait parameters, through an electronic carpet. Prefrontal cortex (PFC) oxygenated hemoglobin (HbO2) and EEG absolute power from FCz, Cz, and CPz channels were calculated. RESULTS: HbO2 concentration reduced for people with PDOFF during obstacle avoidance compared with unobstructed walking. In contrast, both people with PDON and the CG had increased HbO2 concentration when avoiding obstacles compared with unobstructed walking. Dopaminergic medication increased step length, step velocity, and ß and γ power in the CPz channel, regardless of walking condition. Moreover, dopaminergic-related changes (ie, on-off) in FCz/CPz γ power were associated with dopaminergic-related changes in step length for both walking conditions. CONCLUSIONS: PD compromises the activation of the PFC during obstacle avoidance, and dopaminergic medication facilitates its recruitment. In addition, PD medication increases sensorimotor integration during walking by increasing posterior parietal cortex (CPz) activity. Increased γ power in the CPz and FCz channels is correlated with step length improvements achieved with dopaminergic medication during unobstructed walking and obstacle avoidance in PD.
Assuntos
Córtex Cerebral/fisiopatologia , Dopaminérgicos/farmacologia , Transtornos Neurológicos da Marcha , Doença de Parkinson , Desempenho Psicomotor , Caminhada , Idoso , Córtex Cerebral/diagnóstico por imagem , Eletroencefalografia , Feminino , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Índice de Gravidade de Doença , Espectroscopia de Luz Próxima ao Infravermelho , Caminhada/fisiologiaRESUMO
Falls are associated with impairment in postural control in people with Parkinson's disease (PwPD). We aimed to predict the fall risk through models combining postural responses with clinical and cognitive measures. Also, we compared the center of pressure (CoP) between PwPD fallers and non-fallers after unpredictable external perturbations. We expected that CoP parameters combined with clinical and cognitive measures would predict fall risk. Seventy-five individuals participated in the study. CoP parameters were measured during postural responses through five trials with unpredictable translations of the support-surface in posterior direction. Range and peak of CoP were analyzed in two periods: early and late responses. Time to peak (negative peak) and recovery time were analyzed regardless of the periods. Models included the CoP parameters in early (model 1), late responses (model 2), and temporal parameters (model 3). Clinical and cognitive measures were entered into all models. Twenty-nine participants fell at least once, and 46 PwPD did not fall during 12 months following the postural assessment. Range of CoP in late responses was associated with fall risk (p = .046). However, although statistically non-significant, this parameter indicated low accuracy in predicting fall risk (area under the curve = 0.58). Fallers presented a higher range of CoP in early responses than non-fallers (p = .033). In conclusion, although an association was observed between fall risk and range of CoP in late responses, this parameter indicated low accuracy in predicting fall risk in PwPD. Also, fallers demonstrate worse postural control during early responses after external perturbations than non-fallers, measured by CoP parameters.
Assuntos
Doença de Parkinson , Acidentes por Quedas , Suscetibilidade a Doenças , Humanos , Equilíbrio PosturalRESUMO
Parkinson's disease (PD) is often classified into tremor dominant (TD) and postural instability gait disorder (PIGD) subtypes. Degeneration of subcortical/cortical pathways is different between PD subtypes, which leads to differences in motor behavior. However, the influence of PD subtype on cortical activity during walking remains poorly understood. Therefore, we aimed to investigate the influence of PD motor subtypes on cortical activity during unobstructed walking and obstacle avoidance. Seventeen PIGD and 19 TD patients performed unobstructed walking and obstacle avoidance conditions. Brain activity was measured using a mobile functional near-infrared spectroscopy-electroencephalography (EEG) systems, and gait parameters were analyzed using an electronic carpet. Concentrations of oxygenated hemoglobin (HbO2) of the prefrontal cortex (PFC) and EEG absolute power from alpha, beta, and gamma bands in FCz, Cz, CPz, and Oz channels were calculated. These EEG channels correspond to supplementary motor area, primary motor cortex, posterior parietal cortex, and visual cortex, respectively. Postural instability gait disorder patients presented higher PFC activity than TD patients, regardless of the walking condition. Tremor dominant patients presented reduced beta power in the Cz channel during obstacle avoidance compared to unobstructed walking. Both TD and PIGD patients decreased alpha and beta power in the FCz and CPz channels. In conclusion, PIGD patients need to recruit additional cognitive resources from the PFC for walking. Both TD and PIGD patients presented changes in the activation of brain areas related to motor/sensorimotor areas in order to maintain balance control during obstacle avoidance, being that TD patients presented further changes in the motor area (Cz channel) to avoid obstacles.
Assuntos
Transtornos Neurológicos da Marcha , Oxiemoglobinas/análise , Doença de Parkinson , Equilíbrio Postural/fisiologia , Córtex Pré-Frontal , Tremor , Idoso , Eletroencefalografia/métodos , Neuroimagem Funcional/métodos , Análise da Marcha/métodos , Transtornos Neurológicos da Marcha/metabolismo , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Doença de Parkinson/classificação , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tremor/metabolismo , Tremor/fisiopatologia , Caminhada/fisiologia , Caminhada/psicologiaRESUMO
BACKGROUND: Habituation of postural response to perturbations is impaired in people with Parkinson's disease (PD) due to deficits in cortico-basal pathways. Although transcranial direct current stimulation (tDCS) modulate cortico-basal networks, it remains unclear if it can benefit postural control in PD. OBJECTIVE: To analyze the effect of different intensities of anodal tDCS on postural responses and prefrontal cortex (PFC) activity during the habituation to the external perturbation in patients with PD (n = 24). METHODS: Anodal tDCS was applied over the primary motor cortex (M1) with 1 mA, 2 mA, and sham stimulation in 3 different sessions (~2 weeks apart) during 20 minutes immediately before the postural assessment. External perturbation (7 trials) was applied by a support base posterior translation (20 cm/s and 5 cm). Primary outcome measures included lower limb electromyography and center of pressure parameters. Measures of PFC activity are reported as exploratory outcomes. Analyses of variance (Stimulation Condition × Trial) were performed. RESULTS: Habituation of perturbation was evidenced independent of the stimulation conditions. Both active stimulation intensities had shorter recovery time and a trend for lower cortical activity in the stimulated hemisphere when compared to sham condition. Shorter onset latency of the medial gastrocnemius as well as lower cortical activity in the nonstimulated hemisphere were only observed after 2 mA concerning the sham condition. CONCLUSIONS: tDCS over M1 improved the postural response to external perturbation in PD, with better response observed for 2 mA compared with 1 mA. However, tDCS seems to be inefficient in modifying the habituation of perturbation.
Assuntos
Córtex Motor/fisiopatologia , Doença de Parkinson/fisiopatologia , Equilíbrio Postural , Córtex Pré-Frontal/fisiopatologia , Idoso , Eletromiografia , Feminino , Habituação Psicofisiológica , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Transcraniana por Corrente ContínuaRESUMO
BACKGROUND: Declines in gait parameters are common with aging and more pronounced in tasks with increased executive demand. However, the neural correlates of age-related gait impairments are not fully understood yet. OBJECTIVES: To investigate (a) the effects of aging on prefrontal cortex (PFC) activity and gait parameters during usual walking, obstacle crossing and dual-task walking and (b) the association between PFC activity and measures of gait and executive function. METHODS: Eighty-eight healthy individuals were distributed into 6 age-groups: 20-25 (G20), 30-35 (G30), 40-45 (G40), 50-55 (G50), 60-65 (G60), and 70-75 years (G70). Participants walked overground under 3 conditions: usual walking, obstacle crossing, and dual-task walking. Changes in oxygenated and deoxygenated hemoglobin in the PFC were recorded using functional near-infrared spectroscopy. Gait spatiotemporal parameters were assessed using an electronic walkway. Executive function was assessed through validated tests. RESULTS: Between-group differences on PFC activity were observed for all conditions. Multiple groups (ie, G30, G50, G60, and G70) showed increased PFC activity in at least one of the walking conditions. Young adults (G20 and G30) had the lowest levels of PFC activity while G60 had the highest levels. Only G70 showed reduced executive function and gait impairments (which were more pronounced during obstacle crossing and dual-task walking). PFC activity was related to gait and executive function. CONCLUSIONS: Aging causes a gradual increase in PFC activity during walking. This compensatory mechanism may reach the resource ceiling in the 70s, when reduced executive function limits its efficiency and gait impairments are observed.
Assuntos
Envelhecimento/fisiologia , Função Executiva/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Caminhada/fisiologia , Adulto , Idoso , Feminino , Neuroimagem Funcional , Marcha/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho , Adulto JovemRESUMO
BACKGROUND: Pharmacologic therapy is the primary treatment used to manage Parkinson's disease (PD) symptoms. However, it becomes less effective with time and some symptoms do not respond to medication. Complementary interventions are therefore required for PD. Recent studies have implemented transcranial direct current stimulation (tDCS) in combination with other modalities of interventions, such as physical and cognitive training. Although the combination of tDCS with physical and cognitive training seems promising, the existing studies present mixed results. Therefore, a systematic review of the literature is necessary. AIMS: This systematic review aims to (i) assess the clinical effects of tDCS when applied in combination with physical or cognitive therapies in people with PD and; (ii) analyze how specific details of the intervention protocols may relate to findings. METHODS: The search strategy detailed the technique of stimulation, population and combined interventions (i.e. cognitive and/or physical training). Only controlled studies were included. RESULTS: Seventeen of an initial yield of 408 studies satisfied the criteria. Studies involved small sample sizes. tDCS protocols and characteristics of combined interventions varied. The reviewed studies suggest that synergistic effects may be obtained for cognition, upper limb function, gait/mobility and posture when tDCS is combined with cognitive and/or motor interventions in PD. CONCLUSION: The reported results encourage further research to better understand the therapeutic utility of tDCS and to inform optimal clinical use in PD. Future studies in this field should focus on determining optimal stimulation parameters and intervention characteristics for maximal benefits in people with PD.
Assuntos
Doença de Parkinson/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Humanos , MasculinoRESUMO
Background. Although dopaminergic medication improves dual task walking in people with Parkinson disease (PD), the underlying neural mechanisms are not yet fully understood. As prefrontal cognitive resources are involved in dual task walking, evaluation of the prefrontal cortex (PFC) is required. Objective. To investigate the effect of dopaminergic medication on PFC activity and gait parameters during dual task walking in people with PD. Methods. A total of 20 individuals with PD (69.8 ± 5.9 years) and 30 healthy older people (68.0 ± 5.6 years) performed 2 walking conditions: single and dual task (walking while performing a digit vigilance task). A mobile functional near infrared spectroscopy system and an electronic sensor carpet were used to analyze PFC activation and gait parameters, respectively. Relative concentrations of oxygenated hemoglobin (HbO2) from the left and right PFC were measured. Results. People with PD in the off state did not present changes in HbO2 level in the left PFC across walking conditions. In contrast, in the on state, they presented increased HbO2 levels during dual task compared with single task. Regardless of medication state, people with PD presented increased HbO2 levels in the right PFC during dual task walking compared with single task. The control group demonstrated increased PFC activity in both hemispheres during dual task compared with single task. People with PD showed increases in both step length and velocity in the on state compared with the off state. Conclusions. PD limits the activation of the left PFC during dual task walking, and dopaminergic medication facilitates its recruitment.
Assuntos
Dopaminérgicos/farmacologia , Função Executiva/efeitos dos fármacos , Marcha/efeitos dos fármacos , Levodopa/farmacologia , Doença de Parkinson/tratamento farmacológico , Córtex Pré-Frontal/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Idoso , Função Executiva/fisiologia , Feminino , Neuroimagem Funcional , Marcha/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor/fisiologia , Espectroscopia de Luz Próxima ao InfravermelhoRESUMO
Gait asymmetry during unobstructed walking in people with Parkinson's disease (PD) has been well documented. However, under complex situations, such as environments with double obstacles, gait asymmetry remains poorly understood in PD. Therefore, the aim of this study was to analyze inter-limb asymmetry while crossing a single obstacle and double obstacles (with different distances between them) in people with PD and healthy older adults. Nineteen people with PD and 19 healthy older people performed three conditions: (i) walking with one obstacle (Single); (ii) walking with two obstacles with a 50 cm distance between them (Double-50); (iii) walking with two obstacles with a 108 cm distance between them (Double-108). The participants performed the obstacle crossing with both lower limbs. Asymmetry Index was calculated. We found that people with PD presented higher leading and trailing toe clearance asymmetry than healthy older people. In addition, participants increased asymmetry in the Double-50 compared to Single condition. It can be concluded that people with PD show higher asymmetry during obstacle crossing compared to healthy older people, independently of the number of obstacles. In addition, a challenging environment induces asymmetry during obstacle crossing in both people with PD and healthy older people.
Assuntos
Envelhecimento/fisiologia , Marcha/fisiologia , Doença de Parkinson/fisiopatologia , Acidentes por Quedas , Idoso , Fenômenos Biomecânicos , Feminino , Análise da Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Projetos PilotoRESUMO
AIM: The aim of the present study was to analyze the association of depressive and anxiety symptoms with usual walking and obstacle avoidance in patients with Parkinson's disease. METHODS: Patients were divided into three groups: without depressive and anxiety symptoms (n = 28); depressive symptoms only (n = 15); and depressive and anxiety symptoms (n = 19). Symptoms of depression and anxiety were evaluated by the Hospital Anxiety and Depression scale. Participants walked across a pathway in two experimental conditions: usual walking and obstacle avoidance. Kinematic data were recorded using an optoelectronic three-dimensional system. RESULTS: During usual walking, the depressive and anxiety symptoms group presented shorter stride length and longer double support phase compared with the without depressive and anxiety symptoms group, and lower velocity than the without depressive and anxiety symptoms and depressive symptoms groups. During the approach phase of obstacle avoidance, the depressive and anxiety symptoms group decreased the stride length and velocity, whereas the without depressive and anxiety symptoms and depressive symptoms groups did not modulate these parameters. The depressive and anxiety symptoms group also showed shorter step length and velocity, longer step duration, and wider step width during obstacle crossing. Additionally, the depressive and anxiety symptoms group presented shorter foot-to-obstacle horizontal distances, and lower horizontal mean velocities during obstacle crossing. Partial correlation analyses showed that both depressive and anxiety symptoms were associated with spatiotemporal gait parameters. CONCLUSION: Combined symptoms of depression and anxiety are associated with walking impairments in patients with Parkinson's disease in both usual walking and obstacle avoidance. Geriatr Gerontol Int 2019; 19: 868-873.
Assuntos
Ansiedade , Depressão , Doença de Parkinson , Caminhada , Idoso , Ansiedade/diagnóstico , Ansiedade/etiologia , Ansiedade/fisiopatologia , Acessibilidade Arquitetônica , Fenômenos Biomecânicos , Correlação de Dados , Depressão/diagnóstico , Depressão/etiologia , Depressão/fisiopatologia , Feminino , Humanos , Masculino , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Desempenho Físico Funcional , Escalas de Graduação Psiquiátrica , Caminhada/fisiologia , Caminhada/psicologiaRESUMO
INTRODUCTION: Postural instability during walking and tripping over obstacles are the main causes of falls in people with Parkinson's disease (PD). Preliminary limited evidence suggests that the length of the prospective follow-up period affects falls prediction in PD, with shorter periods leading to more accurate prediction. Thus, the primary aim of the present study was to test the performance of center of pressure (CoP) variables during obstacle crossing to predict fall risk in people with PD during subsequent periods of four, six, and 12â¯months. We also compared CoP variables during obstacle crossing between fallers and non-fallers. METHODS: Forty-two individuals with PD, in mild to moderate stages, completed the baseline obstacle crossing assessment and reported falls for 12â¯months. Participants walked at their self-selected pace and were instructed to cross an obstacle (half knee height) positioned in the middle of an 8-m long pathway. A force platform was used to analyze CoP parameters of the stance phase of the trailing limb (most affected limb). The ability of each outcome measure to predict fall risk at four, six, and 12â¯months was assessed using receiver operating characteristic curve analyses. RESULTS: Ten individuals (23.8%) were considered fallers at four months, twelve individuals (28.5%) at six months, and twenty-one individuals (50%) at 12â¯months. CoP amplitude and CoP velocity in the mediolateral direction significantly predicted fall risk at four, six, and 12â¯months. As judged by the area under the curve, mediolateral CoP velocity showed the best performance at four months, while mediolateral CoP amplitude showed the best performance at six months. Fallers presented greater values of mediolateral CoP velocity and amplitude than non-fallers. CONCLUSION: These findings suggest that mediolateral CoP velocity and amplitude during obstacle crossing might be useful to predict fall risk in people with PD. Therefore, larger studies are encouraged.
RESUMO
Different clinical subtypes of Parkinson's disease (PD) have long been recognized. Recent studies have focused on two PD subtypes: Postural Instability and Gait Difficulty (PIGD) and Tremor Dominant (TD). PIGD patients have greater difficulties in postural control in relation to TD. However, knowledge about the differences in reactive adjustment mechanisms following a perturbation in TD and PIGD is limited. This study aimed to compare reactive postural adjustments under unexpected external perturbation in TD, PIGD, and control group (CG) subjects. Forty-five individuals (15 TD, 15 PIGD, and 15 CG) participated in this study. Postural perturbation was applied by the posterior displacement of the support surface in an unexpected condition. The velocity (15â¯cm/s) and displacement (5â¯cm/s) of perturbation were the same for all participants. Center of pressure (CoP) and center of mass (CoM) were analyzed for two reactive windows after the perturbation (0-200â¯ms and 200-700â¯ms). The Bonferroni post hoc test indicated a higher range of CoP in the PIGD when compared to the CG (pâ¯=â¯0.021). The PIGD demonstrated greater time to recover the stable posture compared to the TD (pâ¯=â¯0.017) and CG (pâ¯=â¯0.003). Furthermore, the TD showed higher AP-acceleration peak of CoM when compared to the PIGD (pâ¯=â¯0.048) and CG (pâ¯=â¯0.013), and greater AP-acceleration range of CoM in relation to the CG (pâ¯=â¯0.022). These findings suggest that PD patients present worse reactive postural control after perturbation compared to healthy older individuals. CoP and CoM parameters are sensitive to understand and detect the differences in reactive postural mechanisms in PD subtypes.
Assuntos
Doença de Parkinson/fisiopatologia , Postura/fisiologia , Aceleração , Adaptação Fisiológica/fisiologia , Idoso , Idoso de 80 Anos ou mais , Antropometria/métodos , Estudos de Casos e Controles , Feminino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Equilíbrio Postural/fisiologia , Tremor/etiologia , Tremor/fisiopatologiaRESUMO
This study investigated the effects of Parkinson's Disease (PD) on the perceptive judgment of stair step height using both exteroceptive visual and exproprioceptive judgments. We invited 14 individuals with PD and 14 neurologically healthy older adults (OA) to perform perceptual judgment tasks for first step stairway heights of 11 and 20 cm. Initially, participants performed first the exteroceptive visual judgment and then the exproprioceptive judgment in five randomized trials for each stair height. An analysis of variance for the exteroceptive visual judgment revealed no main effects or interaction between PD versus OA groups and height. However, the analysis of variance for exproprioceptive judgment revealed a significant interaction between group and height ( F1,26 = 9.519; p = .005; Pη2 = .268) such that both groups made more errors in exproprioceptive judgment at a height of 11 cm. The OA group made more errors in exproprioceptive judgment for the 20-cm step when compared with the PD group ( p = .016) but the PD group underestimated the step height. We conclude that PD influences exproprioceptive perception of step height and that steps with smaller (vs. larger) heights induce greater exproprioceptive error.