Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 35(15-16): 1093-1108, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34266887

RESUMO

Abnormal numerical and structural chromosome content is frequently found in human cancer. To test the role of aneuploidy in tumor initiation and progression, we generated mice with random aneuploidies by transient induction of polo-like kinase 4 (Plk4), a master regulator of centrosome number. Short-term chromosome instability (CIN) from transient Plk4 induction resulted in formation of aggressive T-cell lymphomas in mice with heterozygous inactivation of one p53 allele and accelerated tumor development in the absence of p53. Transient CIN increased the frequency of lymphoma-initiating cells with a specific karyotype profile, including trisomy of chromosomes 4, 5, 14, and 15 occurring early in tumorigenesis. Tumor development in mice with chronic CIN induced by an independent mechanism (through inactivation of the spindle assembly checkpoint) gradually trended toward a similar karyotypic profile, as determined by single-cell whole-genome DNA sequencing. Overall, we show how transient CIN generates cells with random aneuploidies from which ones that acquire a karyotype with specific chromosome gains are sufficient to drive cancer formation, and that distinct CIN mechanisms can lead to similar karyotypic cancer-causing outcomes.


Assuntos
Aneuploidia , Instabilidade Cromossômica , Animais , Transformação Celular Neoplásica/genética , Centrossomo , Instabilidade Cromossômica/genética , Evolução Clonal , Instabilidade Genômica/genética , Camundongos
2.
Front Cell Dev Biol ; 8: 578239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072760

RESUMO

Cilia are small organelles present at the surface of most differentiated cells where they act as sensors for mechanical or biochemical stimuli. Cilia assembly and function require the Intraflagellar Transport (IFT) machinery, an intracellular transport system that functions in association with microtubules and motors. If IFT proteins have long been studied for their ciliary roles, recent evidences indicate that their functions are not restricted to the cilium. Indeed, IFT proteins are found outside the ciliary compartment where they are involved in a variety of cellular processes in association with non-ciliary motors. Recent works also provide evidence that non-ciliary roles of IFT proteins could be responsible for the development of ciliopathies related phenotypes including polycystic kidney diseases. In this review, we will discuss the interactions of IFT proteins with microtubules and motors as well as newly identified non-ciliary functions of IFT proteins, focusing on their roles in cell division. We will also discuss the potential contribution of non-ciliary IFT proteins functions to the etiology of kidney diseases.

3.
Cell Rep ; 32(3): 107932, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32698004

RESUMO

Cilia and the intraflagellar transport (IFT) proteins involved in ciliogenesis are associated with congenital heart diseases (CHDs). However, the molecular links between cilia, IFT proteins, and cardiogenesis are yet to be established. Using a combination of biochemistry, genetics, and live-imaging methods, we show that IFT complex B proteins (Ift88, Ift54, and Ift20) modulate the Hippo pathway effector YAP1 in zebrafish and mouse. We demonstrate that this interaction is key to restrict the formation of the proepicardium and the myocardium. In cellulo experiments suggest that IFT88 and IFT20 interact with YAP1 in the cytoplasm and functionally modulate its activity, identifying a molecular link between cilia-related proteins and the Hippo pathway. Taken together, our results highlight a noncanonical role for IFT complex B proteins during cardiogenesis and shed light on a mechanism of action for ciliary proteins in YAP1 regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Flagelos/metabolismo , Coração/embriologia , Organogênese , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Transporte Biológico , Proteínas Morfogenéticas Ósseas/metabolismo , Cílios/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Pericárdio/metabolismo , Ligação Proteica , Transdução de Sinais , Proteínas de Sinalização YAP
4.
EMBO Rep ; 21(6): e49234, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270908

RESUMO

Centrosome amplification is a hallmark of cancer, and centrosome clustering is essential for cancer cell survival. The mitotic kinesin HSET is an essential contributor to this process. Recent studies have highlighted novel functions for intraflagellar transport (IFT) proteins in regulating motors and mitotic processes. Here, using siRNA knock-down of various IFT proteins or AID-inducible degradation of endogenous IFT88 in combination with small-molecule inhibition of HSET, we show that IFT proteins together with HSET are required for efficient centrosome clustering. We identify a direct interaction between the kinesin HSET and IFT proteins, and we define how IFT proteins contribute to clustering dynamics during mitosis using high-resolution live imaging of centrosomes. Finally, we demonstrate the requirement of IFT88 for efficient centrosome clustering in a variety of cancer cell lines naturally harboring supernumerary centrosomes and its importance for cancer cell proliferation. Overall, our data unravel a novel role for the IFT machinery in centrosome clustering during mitosis in cells harboring supernumerary centrosomes.


Assuntos
Proteínas de Transporte , Centrossomo , Proteínas de Transporte/genética , Centrossomo/metabolismo , Análise por Conglomerados , Cinesinas/genética , Cinesinas/metabolismo , Mitose/genética
5.
Sci Rep ; 9(1): 10311, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31312011

RESUMO

To build and maintain mitotic spindle architecture, molecular motors exert spatially regulated forces on microtubules (MT) minus-ends. This spatial regulation is required to allow proper chromosomes alignment through the organization of kinetochore fibers (k-fibers). NuMA was recently shown to target dynactin to MT minus-ends and thus to spatially regulate dynein activity. However, given that k-fibers are embedded in the spindle, our understanding of the machinery involved in the targeting of proteins to their minus-ends remains limited. Intraflagellar transport (IFT) proteins were primarily studied for their ciliary roles but they also emerged as key regulators of cell division. Taking advantage of MT laser ablation, we show here that IFT88 concentrates at k-fibers minus-ends and is required for their re-anchoring into spindles by controlling NuMA accumulation. Indeed, IFT88 interacts with NuMA and is required for its enrichment at newly generated k-fibers minus-ends. Combining nocodazole washout experiments and IFT88 depletion, we further show that IFT88 is required for the reorganization of k-fibers into spindles and thus for efficient chromosomes alignment in mitosis. Overall, we propose that IFT88 could serve as a mitotic MT minus-end adaptor to concentrate NuMA at minus-ends thus facilitating k-fibers incorporation into the main spindle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fuso Acromático/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular , Células HCT116 , Humanos , Terapia a Laser , Nocodazol/farmacologia , Fuso Acromático/efeitos dos fármacos , Sus scrofa
6.
Biophys J ; 114(11): 2640-2652, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874614

RESUMO

Coiled-coil stalks of various kinesins differ significantly in predicted length and structure; this is an adaption that helps these motors carry out their specialized functions. However, little is known about the dynamic stalk configuration in moving motors. To gain insight into the conformational properties of the transporting motors, we developed a theoretical model to predict Brownian motion of a microbead tethered to the tail of a single, freely walking molecule. This approach, which we call the tethered cargo motion (TCM) assay, provides an accurate measure of the mechanical properties of motor-cargo tethering, verified using kinesin-1 conjugated to a microbead via DNA links in vitro. Applying the TCM assay to the mitotic kinesin CENP-E unexpectedly revealed that when walking along a microtubule track, this highly elongated molecule with a contour length of 230 nm formed a 20-nm-long tether. The stalk of a walking CENP-E could not be extended fully by application of sideways force with optical tweezers (up to 4 pN), implying that CENP-E carries its cargo in a compact configuration. Assisting force applied along the microtubule track accelerates CENP-E walking, but this increase does not depend on the presence of the CENP-E stalk. Our results suggest that the unusually large stalk of CENP-E has little role in regulating its function as a transporter. The adjustable stalk configuration may represent a regulatory mechanism for controlling the physical reach between kinetochore-bound CENP-E and spindle microtubules, or it may assist localizing various kinetochore regulators in the immediate vicinity of the kinetochore-embedded microtubule ends. The TCM assay and underlying theoretical framework will provide a general guide for determining the dynamic configurations of various molecular motors moving along their tracks, freely or under force.


Assuntos
Cinesinas/metabolismo , Mitose , Movimento , Pinças Ópticas , Fenômenos Biomecânicos , Segregação de Cromossomos
7.
Nat Commun ; 8(1): 1928, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203870

RESUMO

Cytokinesis mediates the physical separation of dividing cells and, in 3D epithelia, provides a spatial landmark for lumen formation. Here, we unravel an unexpected role in cytokinesis for proteins of the intraflagellar transport (IFT) machinery, initially characterized for their ciliary role and their link to polycystic kidney disease. Using 2D and 3D cultures of renal cells, we show that IFT proteins are required to correctly shape the central spindle, to control symmetric cleavage furrow ingression and to ensure central lumen positioning. Mechanistically, IFT88 directly interacts with the kinesin MKLP2 and is essential for the correct relocalization of the Aurora B/MKLP2 complex to the central spindle. IFT88 is thus required for proper centralspindlin distribution and central spindle microtubule organization. Overall, this work unravels a novel non-ciliary mechanism for IFT proteins at the central spindle, which could contribute to kidney cyst formation by affecting lumen positioning.


Assuntos
Aurora Quinase B/metabolismo , Citocinese/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Células Cultivadas , Células HCT116 , Células HeLa , Humanos , Rim/citologia , Túbulos Renais/citologia , Doenças Renais Policísticas/genética , Sus scrofa , Proteínas Supressoras de Tumor/metabolismo
8.
Dev Cell ; 40(3): 313-322.e5, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132847

RESUMO

Centrosome amplification is a common feature of human tumors, but whether this is a cause or a consequence of cancer remains unclear. Here, we test the consequence of centrosome amplification by creating mice in which centrosome number can be chronically increased in the absence of additional genetic defects. We show that increasing centrosome number elevated tumor initiation in a mouse model of intestinal neoplasia. Most importantly, we demonstrate that supernumerary centrosomes are sufficient to drive aneuploidy and the development of spontaneous tumors in multiple tissues. Tumors arising from centrosome amplification exhibit frequent mitotic errors and possess complex karyotypes, recapitulating a common feature of human cancer. Together, our data support a direct causal relationship among centrosome amplification, genomic instability, and tumor development.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Centrossomo/metabolismo , Mamíferos/metabolismo , Aneuploidia , Animais , Epiderme/metabolismo , Neoplasias Intestinais/patologia , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/metabolismo
9.
Proc Natl Acad Sci U S A ; 112(46): E6321-30, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578792

RESUMO

Centrosomes are microtubule-organizing centers that facilitate bipolar mitotic spindle assembly and chromosome segregation. Recognizing that centrosome amplification is a common feature of aneuploid cancer cells, we tested whether supernumerary centrosomes are sufficient to drive tumor development. To do this, we constructed and analyzed mice in which centrosome amplification can be induced by a Cre-recombinase-mediated increase in expression of Polo-like kinase 4 (Plk4). Elevated Plk4 in mouse fibroblasts produced supernumerary centrosomes and enhanced the expected mitotic errors, but proliferation continued only after inactivation of the p53 tumor suppressor. Increasing Plk4 levels in mice with functional p53 produced centrosome amplification in liver and skin, but this did not promote spontaneous tumor development in these tissues or enhance the growth of chemically induced skin tumors. In the absence of p53, Plk4 overexpression generated widespread centrosome amplification, but did not drive additional tumors or affect development of the fatal thymic lymphomas that arise in animals lacking p53. We conclude that, independent of p53 status, supernumerary centrosomes are not sufficient to drive tumor formation.


Assuntos
Divisão Celular Assimétrica/fisiologia , Centrossomo/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação da Expressão Gênica , Linfoma/genética , Linfoma/metabolismo , Linfoma/patologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias do Timo/genética , Neoplasias do Timo/metabolismo , Neoplasias do Timo/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(46): E6311-20, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578791

RESUMO

As nucleators of the mitotic spindle and primary cilium, centrosomes play crucial roles in equal segregation of DNA content to daughter cells, coordination of growth and differentiation, and transduction of homeostatic cues. Whereas the majority of mammalian cells carry no more than two centrosomes per cell, exceptions to this rule apply in certain specialized tissues and in select disease states, including cancer. Centrosome amplification, or the condition of having more than two centrosomes per cell, has been suggested to contribute to instability of chromosomes, imbalance in asymmetric divisions, and reorganization of tissue architecture; however, the degree to which these conditions are a direct cause of or simply a consequence of human disease is poorly understood. Here we addressed this issue by generating a mouse model inducing centrosome amplification in a naturally proliferative epithelial tissue by elevating Polo-like kinase 4 (Plk4) expression in the skin epidermis. By altering centrosome numbers, we observed multiciliated cells, spindle orientation errors, and chromosome segregation defects within developing epidermis. None of these defects was sufficient to impart a proliferative advantage within the tissue, however. Rather, impaired mitoses led to p53-mediated cell death and contributed to defective growth and stratification. Despite these abnormalities, mice remained viable and healthy, although epidermal cells with centrosome amplification were still appreciable. Moreover, these abnormalities were insufficient to disrupt homeostasis and initiate or enhance tumorigenesis, underscoring the powerful surveillance mechanisms in the skin.


Assuntos
Divisão Celular Assimétrica/fisiologia , Centrossomo/metabolismo , Epiderme/metabolismo , Homeostase/fisiologia , Animais , Morte Celular/fisiologia , Células Epidérmicas , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Knockout , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(40): E4185-93, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246557

RESUMO

The mitotic checkpoint (also known as the spindle assembly checkpoint) prevents premature anaphase onset through generation of an inhibitor of the E3 ubiquitin ligase APC/C, whose ubiquitination of cyclin B and securin targets them for degradation. Combining in vitro reconstitution and cell-based assays, we now identify dual mechanisms through which Bub3 promotes mitotic checkpoint signaling. Bub3 enhances signaling at unattached kinetochores not only by facilitating binding of BubR1 but also by enhancing Cdc20 recruitment to kinetochores mediated by BubR1's internal Cdc20 binding site. Downstream of kinetochore-produced complexes, Bub3 promotes binding of BubR1's conserved, amino terminal Cdc20 binding domain to a site in Cdc20 that becomes exposed by initial Mad2 binding. This latter Bub3-stimulated event generates the final mitotic checkpoint complex of Bub3-BubR1-Cdc20 that selectively inhibits ubiquitination of securin and cyclin B by APC/C(Cdc20). Thus, Bub3 promotes two distinct BubR1-Cdc20 interactions, involving each of the two Cdc20 binding sites of BubR1 and acting at unattached kinetochores or cytoplasmically, respectively, to facilitate production of the mitotic checkpoint inhibitor.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Sítios de Ligação/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina B1/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Microscopia de Fluorescência , Mutação , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Transdução de Sinais/genética , Imagem com Lapso de Tempo , Ubiquitinação
12.
Mol Biol Cell ; 25(15): 2272-81, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24920822

RESUMO

Centromere protein E (CENP-E) is a highly elongated kinesin that transports pole-proximal chromosomes during congression in prometaphase. During metaphase, it facilitates kinetochore-microtubule end-on attachment required to achieve and maintain chromosome alignment. In vitro CENP-E can walk processively along microtubule tracks and follow both growing and shrinking microtubule plus ends. Neither the CENP-E-dependent transport along microtubules nor its tip-tracking activity requires the unusually long coiled-coil stalk of CENP-E. The biological role for the CENP-E stalk has now been identified through creation of "Bonsai" CENP-E with significantly shortened stalk but wild-type motor and tail domains. We demonstrate that Bonsai CENP-E fails to bind microtubules in vitro unless a cargo is contemporaneously bound via its C-terminal tail. In contrast, both full-length and truncated CENP-E that has no stalk and tail exhibit robust motility with and without cargo binding, highlighting the importance of CENP-E stalk for its activity. Correspondingly, kinetochore attachment to microtubule ends is shown to be disrupted in cells whose CENP-E has a shortened stalk, thereby producing chromosome misalignment in metaphase and lagging chromosomes during anaphase. Together these findings establish an unexpected role of CENP-E elongated stalk in ensuring stability of kinetochore-microtubule attachments during chromosome congression and segregation.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Cinetocoros/metabolismo , Metáfase , Microtúbulos/metabolismo , Anáfase , Animais , Bovinos , Linhagem Celular , Proteínas Cromossômicas não Histona/química , Cromossomos Humanos/metabolismo , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Xenopus laevis
13.
Hum Genet ; 133(8): 1023-39, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24748105

RESUMO

Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans.


Assuntos
Centrômero/fisiologia , Centrossomo/fisiologia , Proteínas Cromossômicas não Histona/genética , Nanismo/genética , Retardo do Crescimento Fetal/genética , Cinetocoros/fisiologia , Microcefalia/genética , Mutação/genética , Osteocondrodisplasias/genética , Adulto , Sequência de Aminoácidos , Ciclo Celular , Células Cultivadas , Criança , Pré-Escolar , Segregação de Cromossomos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Mitose/fisiologia , Dados de Sequência Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Homologia de Sequência de Aminoácidos
14.
Proc Natl Acad Sci U S A ; 110(44): E4134-41, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24133140

RESUMO

Aneuploidy, a chromosome content other than a multiple of the haploid number, is a common feature of cancer cells. Whole chromosomal aneuploidy accompanying ongoing chromosomal instability in mice resulting from reduced levels of the centromere-linked motor protein CENP-E has been reported to increase the incidence of spleen and lung tumors, but to suppress tumors in three other contexts. Exacerbating chromosome missegregation in CENP-E(+/-) mice by reducing levels of another mitotic checkpoint component, Mad2, is now shown to result in elevated cell death and decreased tumor formation compared with reduction of either protein alone. Furthermore, we determine that the additional contexts in which increased whole-chromosome missegregation resulting from reduced CENP-E suppresses tumor formation have a preexisting, elevated basal level of chromosome missegregation that is exacerbated by reduction of CENP-E. Tumors arising from primary causes that do not generate chromosomal instability, including loss of the INK4a tumor suppressor and microsatellite instability from reduction of the DNA mismatch repair protein MLH1, are unaffected by CENP-E-dependent chromosome missegregation. These findings support a model in which low rates of chromosome missegregation can promote tumorigenesis, whereas missegregation of high numbers of chromosomes leads to cell death and tumor suppression.


Assuntos
Aneuploidia , Instabilidade Cromossômica/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Proteínas Mad2/metabolismo , Neoplasias/genética , Animais , Morte Celular/fisiologia , Células Cultivadas , Segregação de Cromossomos/genética , Imunofluorescência , Camundongos , Modelos Biológicos , Imagem com Lapso de Tempo
15.
Nat Cell Biol ; 15(9): 1079-1088, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23955301

RESUMO

During vertebrate mitosis, the centromere-associated kinesin CENP-E (centromere protein E) transports misaligned chromosomes to the plus ends of spindle microtubules. Subsequently, the kinetochores that form at the centromeres establish stable associations with microtubule ends, which assemble and disassemble dynamically. Here we provide evidence that after chromosomes have congressed and bi-oriented, the CENP-E motor continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends. Using a combination of single-molecule approaches and laser trapping in vitro, we demonstrate that once reaching microtubule ends, CENP-E converts from a lateral transporter into a microtubule tip-tracker that maintains association with both assembling and disassembling microtubule tips. Computational modelling of this behaviour supports our proposal that CENP-E tip-tracks bi-directionally through a tethered motor mechanism, which relies on both the motor and tail domains of CENP-E. Our results provide a molecular framework for the contribution of CENP-E to the stability of attachments between kinetochores and dynamic microtubule ends.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Expressão Gênica , Células HeLa , Humanos , Cinetocoros/ultraestrutura , Mecanotransdução Celular/genética , Microtúbulos/genética , Microtúbulos/ultraestrutura , Transporte Proteico , Fuso Acromático/genética , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
16.
Curr Opin Cell Biol ; 24(6): 809-15, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23127609

RESUMO

Each time a cell divides its chromosome content must be equally segregated into the two daughter cells. This critical process is mediated by a complex microtubule based apparatus, the mitotic spindle. In most animal cells the centrosomes contribute to the formation and the proper function of the mitotic spindle by anchoring and nucleating microtubules and by establishing its functional bipolar organization. Aberrant expression of proteins involved in centrosome biogenesis can drive centrosome dysfunction or abnormal centrosome number, leading ultimately to improper mitotic spindle formation and chromosome missegregation. Here we review recent work focusing on the importance of the centrosome for mitotic spindle formation and the relation between the centrosome status and the mechanisms controlling faithful chromosome inheritance.


Assuntos
Aneuploidia , Centrossomo/metabolismo , Instabilidade Cromossômica , Animais , Ciclo Celular , Proliferação de Células , Centrossomo/patologia , Humanos , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Proteína Supressora de Tumor p53/metabolismo
17.
Mol Biol Cell ; 23(10): 1838-45, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22456511

RESUMO

Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centrioles duplicate once per cell cycle, and duplication is coordinated by Polo-like kinase 4 (Plk4). We previously demonstrated that Plk4 accumulation is autoregulated by its own kinase activity. However, loss of heterozygosity of Plk4 in mouse embryonic fibroblasts has been proposed to cause cytokinesis failure as a primary event, leading to centrosome amplification and gross chromosomal abnormalities. Using targeted gene disruption, we show that human epithelial cells with one inactivated Plk4 allele undergo neither cytokinesis failure nor increase in centrosome amplification. Plk4 is shown to localize exclusively at the centrosome, with none in the spindle midbody. Substantial depletion of Plk4 by small interfering RNA leads to loss of centrioles and subsequent spindle defects that lead to a modest increase in the rate of cytokinesis failure. Therefore, Plk4 is a centriole-localized kinase that does not directly regulate cytokinesis.


Assuntos
Centríolos/metabolismo , Citocinese , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Centrossomo/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Técnicas de Silenciamento de Genes , Heterozigoto , Humanos , Camundongos , Microtúbulos/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Proteico , Interferência de RNA , Fuso Acromático/metabolismo , Imagem com Lapso de Tempo
18.
Biochem Soc Trans ; 37(Pt 5): 997-1001, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19754439

RESUMO

+TIPs (plus-end tracking proteins) are an increasing group of molecules that localize preferentially to the end of growing microtubules. +TIPs regulate microtubule dynamics and contribute to the organization of the microtubular network within the cell. Thus they participate in a wide range of cellular processes including cell division, motility and morphogenesis. EB1 (end-binding 1) is a highly conserved key member of the +TIP group that has been shown to modulate microtubule dynamics both in vitro and in cells. EB1 is involved in accurate chromosome segregation during mitosis and in the polarization of the microtubule cytoskeleton in migrating cells. Here, we review recent in vitro studies that have started to reveal a regulating activity of EB1, and its yeast orthologue Mal3p, on microtubule structure. In particular, we examine how EB1-mediated changes in the microtubule architecture may explain its effects on microtubule dynamics.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos , Conformação Proteica , Animais , Polaridade Celular , Segregação de Cromossomos , Citoesqueleto/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
19.
Nat Cell Biol ; 10(4): 415-21, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18364701

RESUMO

End binding 1 (EB1) is a plus-end-tracking protein (+TIP) that localizes to microtubule plus ends where it modulates their dynamics and interactions with intracellular organelles. Although the regulating activity of EB1 on microtubule dynamics has been studied in cells and purified systems, the molecular mechanisms involved in its specific activity are still unclear. Here, we describe how EB1 regulates the dynamics and structure of microtubules assembled from pure tubulin. We found that EB1 stimulates spontaneous nucleation and growth of microtubules, and promotes both catastrophes (transitions from growth to shrinkage) and rescues (reverse events). Electron cryomicroscopy showed that EB1 induces the initial formation of tubulin sheets, which rapidly close into the common 13-protofilament-microtubule architecture. Our results suggest that EB1 favours the lateral association of free tubulin at microtubule-sheet edges, thereby stimulating nucleation, sheet growth and closure. The reduction of sheet length at microtubule growing-ends together with the elimination of stressed microtubule lattices may account for catastrophes. Conversely, occasional binding of EB1 to the microtubule lattice may induce rescues.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos , Tubulina (Proteína)/metabolismo , Animais , Camundongos , Microscopia de Vídeo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Conformação Proteica , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...