Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 29(42): 6463-6478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34789121

RESUMO

BACKGROUND: Members of the α-thymosin family have long been studied for their immunostimulating properties. Among them, the danger-associated molecular patterns (DAMPs) prothymosin α (proTα) and its C-terminal decapeptide proTα(100-109) have been shown to act as immunomodulators in vitro, due to their ability to promote T helper type 1 (Th1) responses. Recently, we verified these findings in vivo, showing that both proTα and proTα(100-109) enhance antitumor-reactive T cell-mediated responses. METHODS: In view of the eventual use of proTα and proTα(100-109) in humans, we investigated their safety profile in silico, in human leukocytes and cancer cell lines in vitro, and in immunocompetent mice in vivo, in comparison to the proTα derivative thymosin alpha 1 (Τα1), a 28-mer peptide extensively studied for its safety in clinical trials. RESULTS: In silico prediction via computational tools showed that all three peptide sequences likely are non-toxic or do not induce allergic regions. In vitro, pro- Tα, proTα(100-109) and Tα1 did not affect the viability of human cancer cell lines and healthy donor-derived leukocytes, did not promote apoptosis or alter cell cycle distribution. Furthermore, mice injected with proTα, proTα(100-109) and Tα1 at doses equivalent to the suggested dose regimen of Tα1 in humans, did not show signs of acute toxicity, whereas proTα and proTα(100-109) increased the levels of proinflammatory and Th1- type cytokines in their peripheral blood. CONCLUSION: Our preliminary findings suggest that proTα and proTα(100-109), even at high concentrations, are non-toxic in vitro and in an acute toxicity model in vivo; moreover, we show that the two peptides retain their immunomodulatory properties in vivo and, eventually, could be considered for therapeutic use in humans.


Assuntos
Neoplasias , Timosina , Humanos , Camundongos , Animais , Timosina/toxicidade , Peptídeos/uso terapêutico , Citocinas , Fatores Imunológicos/uso terapêutico , Neoplasias/tratamento farmacológico
2.
Cancers (Basel) ; 12(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158030

RESUMO

Despite recent advances, Multiple Myeloma (MM) remains an incurable disease with apparent heterogeneity that may explain patients' variable clinical outcomes. While the phenotypic, (epi)genetic, and molecular characteristics of myeloma cells have been thoroughly examined, there is limited information regarding the role of the bone marrow (BM) microenvironment in the natural history of the disease. In the present study, we performed deep phenotyping of 32 distinct immune cell subsets in a cohort of 94 MM patients to reveal unique immune profiles in both BM and peripheral blood (PB) that characterize distinct prognostic groups, responses to induction treatment, and minimal residual disease (MRD) status. Our data show that PB cells do not reflect the BM microenvironment and that the two sites should be studied independently. Adverse ISS stage and high-risk cytogenetics were correlated with distinct immune profiles; most importantly, BM signatures comprised decreased tumor-associated macrophages (TAMs) and erythroblasts, whereas the unique Treg signatures in PB could discriminate those patients achieving complete remission after VRd induction therapy. Moreover, MRD negative status was correlated with a more experienced CD4- and CD8-mediated immunity phenotype in both BM and PB, thus highlighting a critical role of by-stander cells linked to MRD biology.

3.
Ann Transl Med ; 4(14): 261, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27563648

RESUMO

Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. During the last decade, it has evolved from a promising therapy option to a robust clinical reality. Many immunotherapeutic modalities are already approved by the Food and Drug Administration (FDA) for treating cancer patients and many others are in the pipeline for approval as standalone or combinatorial therapeutic interventions, several also combined with standard treatments in clinical studies. The two main axes of cancer immunotherapeutics refer to passive and active treatments. Prominent examples of passive immunotherapy include administration of monoclonal antibodies and cytokines and adoptive cell transfer of ex vivo "educated" immune cells. Active immunotherapy refers, among others, to anti-cancer vaccines [peptide, dendritic cell (DC)-based and allogeneic whole cell vaccines], immune checkpoint inhibitors and oncolytic viruses, whereas new approaches that can further enhance anti-cancer immune responses are also widely explored. Herein, we present the most popular cancer immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials. To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...