Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256156

RESUMO

IntroductionMutations in the receptor binding domain (RBD) region of SARS-CoV-2 have been shown to impact the infectivity, pathogenicity and transmissibility of new variants of concern (VOC). Even more worrisome, those mutations have the potential of causing immune escape, undermining the population immunity induced by ongoing mass vaccination programs. Gap statementThe massive parallel sequencing techniques have taken a lead role in the detection strategies of the new variants. Nevertheless, they are still cumbersome and labour-demanding. There is an urgent need for novel strategies and techniques aimed at the surveillance of the active emergence and spread of the VOC. AimThe aim of this study was to provide a quick, cheap and straightforward Denaturing High-Performance Liquid Chromatography (DHPLC) method for the prompt identification of the SARS-CoV-2 VOC. MethodologyTwo PCRs were designed to target the RBD region, spanning residues N417 through N501 of the Spike protein. Furthermore, a DHPLC screening analysis was set up. The screening consisted of mixing the unknown sample with a standard sample of a known variant, denaturing at high temperature, renaturing at room temperature followed by a 2-minute run using the WAVE DHPLC system to detect the heteroduplexes which invariably originate whenever the unknown sample has a nucleotide difference with respect to the standard used. ResultsThe workflow was able to readily detect new variants including the P.1, the B.1.585 and the B.1. 617.2 lineages at a very affordable cost. The DHPLC analysis was robust being able to identify variants even in case of samples with very unbalanced target concentration including those samples at the limit of detection. ConclusionsThis approach has the potential of greatly expediting surveillance of the SARS-CoV-2 variants.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20170910

RESUMO

BackgroundPathogenesis of Coronavirus disease 2019 (Covid-19) is poorly understood. Most histologic studies come from post-mortem analysis, with existing data indicating that histologic features of acute respiratory distress syndrome are typically present in fatal cases. However, this observation may be misleading, due to confounding factors in pre-terminal disease, including injury resulting from prolonged mechanical ventilation. Ante-mortem lung biopsy may provide major pathogenetic insights, potentially providing a basis for novel treatment approaches. AimThis comparative, multicenter, prospective, observational study was planned to identify ante-mortem histological profile and immunohistochemical features of lung tissue in patients with Covid-19 in early and late phases of the disease, including markers of inflammatory cells and major pathways involved in the cytokine storm triggering. MethodsEnrolled patients underwent lung biopsy, according to the study protocol approved by local Ethical Committee, either within 15 days of the first symptoms appearing (early phase) or after >15 days (more advanced disease). Key exclusion criteria were excessive or uncorrectable bleeding risk and cardiovascular disease with heart failure. Lung samples were obtained by conventional transbronchial biopsy, trans-bronchial lung cryobiopsy or surgical lung biopsy. Results23 patients were enrolled: 12 patients underwent lung biopsy within 15 days and 11 patients more than 15 days after the onset of symptoms. Early biopsies were characterized by spots of patchy acute lung injury (ALI) with alveolar type II cells hyperplasia and significant vascular abnormalities (disordered angiogenesis with alveolar capillary hyperplasia, luminal enlargement and thickened walls of pulmonary venules, perivascular CD4-T-cell infiltration), with no hyaline membranes. In the later stages, the alveolar architecture appeared disrupted, with areas of organizing ALI, venular congestion and capillary thromboembolic microangiopathy. Striking phenotypic features were demonstrated in hyperplastic pneumocytes and endothelial cells, including the expression of phospho-STAT3 and molecules involved in immunoinhibitory signals (PD-L1 and IDO-1). Alveolar macrophages exhibited macrophage-related markers (CD68, CD11c, CD14) together with unusual markers, such as DC-Lamp/CD208, CD206, CD123/IL3AR. ConclusionA morphologically distinct "Covid pattern" was identified in the earlier stages of the disease, with prominent epithelial and endothelial cell abnormalities, that may be potentially reversible, differing strikingly from findings in classical diffuse alveolar damage. These observations may have major therapeutic implications, justifying studies of early interventions aimed at mitigating inflammatory organ injury.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20165647

RESUMO

T cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection. Here, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2. First, at the individual level, we deeply characterized 3 acutely infected and 58 recovered COVID-19 subjects by experimentally mapping their CD8 T-cell response through antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I presented viral peptides (class II data in a forthcoming study). Then, at the population level, we performed T-cell repertoire sequencing on 1,815 samples (from 1,521 COVID-19 subjects) as well as 3,500 controls to identify shared "public" T-cell receptors (TCRs) associated with SARS-CoV-2 infection from both CD8 and CD4 T cells. Collectively, our data reveal that CD8 T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the T-cell response to SARS-CoV-2 peaks about one to two weeks after infection and is detectable for at least several months after recovery. As an application of these data, we trained a classifier to diagnose SARSCoV-2 infection based solely on TCR sequencing from blood samples, and observed, at 99.8% specificity, high early sensitivity soon after diagnosis (Day 3-7 = 85.1% [95% CI = 79.9-89.7]; Day 8-14 = 94.8% [90.7-98.4]) as well as lasting sensitivity after recovery (Day 29+/convalescent = 95.4% [92.1-98.3]). These results demonstrate an approach to reliably assess the adaptive immune response both soon after viral antigenic exposure (before antibodies are typically detectable) as well as at later time points. This blood-based molecular approach to characterizing the cellular immune response has applications in clinical diagnostics as well as in vaccine development and monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA