Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(30): 12543-12553, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39012300

RESUMO

Layered double hydroxides (LDHs) are a class of layered solids applied in many application fields. The study of synthetic methods able to control the interlayer composition and morphology of LDH is an open issue. The urea method, which exploits the thermal decomposition of urea, is known for yielding highly crystalline LDH in the carbonate form. This form is highly stable and, to replace carbonate ions with more easily exchangeable anions, a second step is required. In this work, we modified the urea method to obtain MgAl and ZnAl LDH in the chloride or nitrate form through a one-step synthesis. The effects of the urea/(Al + M(II)) molar ratio (R), reaction time and metal salt concentrations were deeply investigated. We found that LDH in chloride and nitrate forms can be prepared from solutions of metal salts not exceeding 1 M by adjusting R and maintaining the reaction time at 48 hours. The morphology of these products was found to depend on the R value and on the metal salts used in the synthesis. A high R value and nitrate salts favoured the formation of sand-rose crystals, while chloride salts induced the formation of plate-like crystals. The crystal growth mechanism and the parameters influencing the morphology are discussed with reference to ZnAl LDH by monitoring the synthesis over time.

2.
Appl Spectrosc ; : 37028241243375, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567433

RESUMO

Lead-calcium phosphates are unusual compounds sometimes found in different kinds of cultural heritage objects. Structural and physicochemical properties of this family of materials, which fall into the hydroxypyromorphite-hydroxyapatite solid solution, or (PbxCa1-x)5(PO4)3OH, have received considerable attention during the last few decades for promising applications in different fields of environmental and material sciences, but their diagnostic implications in the cultural heritage context have been poorly explored. This paper aims to provide a clearer understanding of the relationship between compositional and structural properties of the peculiar series of (PbxCa1-x)5(PO4)3OH solid solutions and to determine key markers for their proper non-destructive and non-invasive identification in cultural heritage samples and objects. For this purpose, a systematic study of powders and paint mock-ups made up of commercial and in-house synthesized (PbxCa1-x)5(PO4)3OH compounds with a different Pb2+/Ca2+ ratio was carried out via a multi-technique approach based on scanning electron microscopy, synchrotron radiation-based X-ray techniques, i.e., X-ray powder diffraction and X-ray absorption near edge structure spectroscopy at the Ca K- and P K-edges, and vibrational spectroscopy methods, i.e., micro-Raman and Fourier transform infrared spectroscopy. The spectral modifications observed in the hydroxypyromorphite-hydroxyapatite solid solution series are discussed, by assessing the advantages and disadvantages of the proposed techniques and by providing reference data and optimized approaches for future non-destructive and non-invasive applications to study cultural heritage objects and samples.

3.
Chem Sci ; 15(4): 1348-1363, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38274069

RESUMO

Despite substantial advancements in the field of the electrocatalytic oxygen evolution reaction (OER), the efficiency of earth-abundant electrocatalysts remains far from ideal. The difficulty stems from the complex nature of the catalytic system, which limits our fundamental understanding of the process and thus the possibility of a rational improvement of performance. Herein, we shed light on the role played by the tunable 3d configuration of the metal centers in determining the OER catalytic activity by combining electrochemical and spectroscopic measurements with an experimentally validated computational protocol. One-dimensional coordination polymers based on Fe, Co and Ni held together by an oxonato linker were selected as a case study because of their well-defined electronic and geometric structure in the active site, which can be straightforwardly correlated with their catalytic activity. Novel heterobimetallic coordination polymers were also considered, in order to shed light on the cooperativity effects of different metals. Our results demonstrate the fundamental importance of electronic structure effects such as metal spin and oxidation state evolutions along the reaction profile to modulate ligand binding energies and increase catalyst efficiency. We demonstrated that these effects could in principle be exploited to reduce the overpotential of the electrocatalytic OER below its theoretical limit, and we provide basic principles for the development of coordination polymers with a tailored electronic structure and activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA