Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 92(3): 409-414, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30769677

RESUMO

Almond leaf scorch (ALS) disease has been present in California's almond-growing regions for over 60 years. This disease is caused by the bacterium Xylella fastidiosa and the pathogen is vectored by xylem-feeding sharpshooters and spittlebugs. Currently, there are no effective management techniques that prevent trees from becoming infected. Within affected orchards throughout California's Central Valley, disease incidence and the risk of tree-to-tree spread appears to be low. Consequently, the decision to remove or keep infected trees depends on lost productivity. We compared yield and vitality between infected and uninfected almond for cvs. Sonora and Nonpareil. Sonora was examined at three sites over 3 years and Nonpareil was examined at one site over 2 years. Yields of ALS-affected trees were significantly lower for both cultivars, although yield losses of Sonora were proportionally greater than those of Nonpareil. Yields of infected trees did not decline incrementally over years; rather, they fluctuated similarly to those of uninfected trees. In addition, no infected trees died during the course of the study. These results are in direct contrast to previous anecdotal reports which suggest that yields of infected trees incrementally decline and infected trees eventually die. A simple economic model was developed to determine conditions under which rouging infected trees would increase returns. Based on the model, orchard age, yield loss due to infection, and the value of a maximally producing almond tree should be considered when deciding to remove ALS-affected trees.

2.
Plant Dis ; 90(7): 905-909, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30781028

RESUMO

Xylella fastidiosa is a xylem-limited bacterium that causes almond leaf scorch (ALS), Pierce's disease of grapevines, and other plant diseases. We surveyed ground vegetation in ALS-infected almond orchards in California's Central Valley for the presence of this bacterium. Plant tissue samples were collected throughout a 2-year period and processed for the presence of X. fastidiosa using restriction enzyme digestion of RST31 and RST33 polymerase chain reaction (PCR) products and bacterial culture on selective media. Overall disease incidence was low in the ground vegetation species; only 63 of 1,369 samples tested positive. Of the 38 species of common ground vegetation tested, 11 tested positive for X. fastidiosa, including such common species as shepherd's purse (Capsella bursa-pastoris), filaree (Erodium spp.), cheeseweed (Malva parvifolia), burclover (Medicago polymorpha), annual bluegrass (Poa annua) London rocket (Sisymbrium irio), and chickweed (Stellaria media). There was a seasonal component to bacterial presence, with positive samples found only between November and March. Both ground vegetation and almond trees were most commonly infected with the almond strain of X. fastidiosa (six of seven surveyed sites). ALS-infected almond samples had an X. fastidiosa concentration within previously reported ranges (1.84 × 106 to 2.15 × 107 CFU/g); however, we were unable to accurately measure X. fastidiosa titer in sampled ground vegetation for comparison. These results are discussed with respect to ground vegetation management for ALS control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...