Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nat Commun ; 15(1): 4096, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750019

RESUMO

The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKß independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Succinatos , Animais , Humanos , Terapia Viral Oncolítica/métodos , Succinatos/farmacologia , Camundongos , Linhagem Celular Tumoral , Interferon Tipo I/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias do Colo/terapia , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Antivirais/farmacologia , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Inflamação/tratamento farmacológico , Feminino , Vírus da Estomatite Vesicular Indiana/fisiologia , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Commun Biol ; 7(1): 283, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454028

RESUMO

DNA is a danger signal sensed by cGAS to engage signaling through STING to activate innate immune functions. The best-studied downstream responses to STING activation include expression of type I interferon and inflammatory genes, but STING also activates other pathways, including apoptosis. Here, we report that STING-dependent induction of apoptosis in macrophages occurs through the intrinsic mitochondrial pathway and is mediated via IRF3 but acts independently of gene transcription. By intersecting four mass spectrometry datasets, we identify SAM68 as crucial for the induction of apoptosis downstream of STING activation. SAM68 is essential for the full activation of apoptosis. Still, it is not required for STING-mediated activation of IFN expression or activation of NF-κB. Mechanistic studies reveal that protein trafficking is required and involves SAM68 recruitment to STING upon activation, with the two proteins associating at the Golgi or a post-Golgi compartment. Collectively, our work identifies SAM68 as a STING-interacting protein enabling induction of apoptosis through this DNA-activated innate immune pathway.


Assuntos
Proteínas de Membrana , Transdução de Sinais , Proteínas de Membrana/metabolismo , Macrófagos/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Apoptose
3.
BMC Bioinformatics ; 24(1): 221, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259021

RESUMO

BACKGROUND: As genome sequencing becomes better integrated into scientific research, government policy, and personalized medicine, the primary challenge for researchers is shifting from generating raw data to analyzing these vast datasets. Although much work has been done to reduce compute times using various configurations of traditional CPU computing infrastructures, Graphics Processing Units (GPUs) offer opportunities to accelerate genomic workflows by orders of magnitude. Here we benchmark one GPU-accelerated software suite called NVIDIA Parabricks on Amazon Web Services (AWS), Google Cloud Platform (GCP), and an NVIDIA DGX cluster. We benchmarked six variant calling pipelines, including two germline callers (HaplotypeCaller and DeepVariant) and four somatic callers (Mutect2, Muse, LoFreq, SomaticSniper). RESULTS: We achieved up to 65 × acceleration with germline variant callers, bringing HaplotypeCaller runtimes down from 36 h to 33 min on AWS, 35 min on GCP, and 24 min on the NVIDIA DGX. Somatic callers exhibited more variation between the number of GPUs and computing platforms. On cloud platforms, GPU-accelerated germline callers resulted in cost savings compared with CPU runs, whereas some somatic callers were more expensive than CPU runs because their GPU acceleration was not sufficient to overcome the increased GPU cost. CONCLUSIONS: Germline variant callers scaled well with the number of GPUs across platforms, whereas somatic variant callers exhibited more variation in the number of GPUs with the fastest runtimes, suggesting that, at least with the version of Parabricks used here, these workflows are less GPU optimized and require benchmarking on the platform of choice before being deployed at production scales. Our study demonstrates that GPUs can be used to greatly accelerate genomic workflows, thus bringing closer to grasp urgent societal advances in the areas of biosurveillance and personalized medicine.


Assuntos
Gráficos por Computador , Software , Fluxo de Trabalho , Genômica
4.
Mol Aspects Med ; 88: 101152, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36368281

RESUMO

Granzymes are a family of small (∼32 kDa) serine proteases with a range of substrate specificities that are stored in, and released from, the cytoplasmic secretory vesicles ('granules') of cytotoxic T lymphocytes and natural killer cells. Granzymes are not digestive proteases but finely tuned processing enzymes that target their substrates in specific ways to activate various signalling pathways, or to inactivate viral proteins and other targets. Great emphasis has been placed on studying the pro-apoptotic functions of granzymes, which largely depend on their synergy with the pore-forming protein perforin, on which they rely for penetration into the target cell cytosol to access their substrates. While a critical role for granzyme B in target cell apoptosis is undisputed, both it and the remaining granzymes also influence a variety of other biological processes (including important immunoregulatory functions), which are discussed in this review. This includes the targeting of many extracellular as well as intracellular substrates, and can also lead to deleterious outcomes for the host if granzyme expression or function are dysregulated or abrogated. A final important consideration is that granzyme repertoire, biochemistry and function vary considerably across species, probably resulting from the pressures applied by viruses and other pathogens across evolutionary time. This has implications for the interpretation of granzyme function in preclinical models of disease.


Assuntos
Serina , Linfócitos T Citotóxicos , Humanos , Granzimas/genética , Granzimas/metabolismo , Perforina , Linfócitos T Citotóxicos/metabolismo , Células Matadoras Naturais/metabolismo , Caspases , Apoptose
5.
J Med Chem ; 65(21): 14305-14325, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36263926

RESUMO

New drugs that precisely target the immune mechanisms critical for cytotoxic T lymphocyte (CTL) and natural killer (NK) cell driven pathologies are desperately needed. In this perspective, we explore the cytolytic protein perforin as a target for therapeutic intervention. Perforin plays an indispensable role in CTL/NK killing and controls a range of immune pathologies, while being encoded by a single copy gene with no redundancy of function. An immunosuppressant targeting this protein would provide the first-ever therapy focused specifically on one of the principal cell death pathways contributing to allotransplant rejection and underpinning multiple autoimmune and postinfectious diseases. No drugs that selectively block perforin-dependent cell death are currently in clinical use, so this perspective will review published novel small molecule inhibitors, concluding with in vivo proof-of-concept experiments performed in mouse models of perforin-mediated immune pathologies that provide a potential pathway toward a clinically useful therapeutic agent.


Assuntos
Autoimunidade , Citotoxicidade Imunológica , Camundongos , Animais , Perforina , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Imunossupressores/metabolismo , Proteínas Citotóxicas Formadoras de Poros , Glicoproteínas de Membrana/metabolismo , Linfócitos T Citotóxicos
6.
Sci Adv ; 8(37): eabm9427, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103522

RESUMO

The mechanism of action of eprenetapopt (APR-246, PRIMA-1MET) as an anticancer agent remains unresolved, although the clinical development of eprenetapopt focuses on its reported mechanism of action as a mutant-p53 reactivator. Using unbiased approaches, this study demonstrates that eprenetapopt depletes cellular antioxidant glutathione levels by increasing its turnover, triggering a nonapoptotic, iron-dependent form of cell death known as ferroptosis. Deficiency in genes responsible for supplying cancer cells with the substrates for de novo glutathione synthesis (SLC7A11, SHMT2, and MTHFD1L), as well as the enzymes required to synthesize glutathione (GCLC and GCLM), augments the activity of eprenetapopt. Eprenetapopt also inhibits iron-sulfur cluster biogenesis by limiting the cysteine desulfurase activity of NFS1, which potentiates ferroptosis and may restrict cellular proliferation. The combination of eprenetapopt with dietary serine and glycine restriction synergizes to inhibit esophageal xenograft tumor growth. These findings reframe the canonical view of eprenetapopt from a mutant-p53 reactivator to a ferroptosis inducer.

8.
Eur J Immunol ; 52(10): 1610-1619, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987516

RESUMO

Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy that may lead to organ failure. Dysregulation of the complement system can cause aHUS, and various disease-related variants in the complement regulatory protein CD46 are described. We here report a pediatric patient with aHUS carrying a hitherto unreported homozygous variant in CD46 (NM_172359.3:c.602C>T p.(Ser201Leu)). In our functional analyses, this variant caused complement dysregulation through three separate mechanisms. First, CD46 surface expression on the patient's blood cells was significantly reduced. Second, stably expressing CD46(Ser201Leu) cells bound markedly less to patterns of C3b than CD46 WT cells. Third, the patient predominantly expressed the rare isoforms of CD46 (C dominated) instead of the more common isoforms (BC dominated). Using BC1 and C1 expressing cell lines, we found that the C1 isoform bound markedly less C3b than the BC1 isoform. These results highlight the coexistence of multiple mechanisms that may act synergistically to disrupt CD46 function during aHUS development.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Síndrome Hemolítico-Urêmica Atípica/genética , Criança , Complemento C3b , Proteínas do Sistema Complemento , Humanos , Proteína Cofatora de Membrana/genética , Mutação , Isoformas de Proteínas/genética
9.
ACS Pharmacol Transl Sci ; 5(6): 429-439, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35711815

RESUMO

Perforin is a key effector of lymphocyte-mediated cell death pathways and contributes to transplant rejection of immunologically mismatched grafts. We have developed a novel series of benzenesulfonamide (BZS) inhibitors of perforin that can mitigate graft rejection during allogeneic bone marrow/stem cell transplantation. Eight such perforin inhibitors were tested for their murine pharmacokinetics, plasma protein binding, and their ability to block perforin-mediated lysis in vitro and to block the rejection of major histocompatibility complex (MHC)-mismatched mouse bone marrow cells. All compounds showed >99% binding to plasma proteins and demonstrated perforin inhibitory activity in vitro and in vivo. A lead compound, compound 1, that showed significant increases in allogeneic bone marrow preservation was evaluated for its plasma pharmacokinetics and in vivo efficacy at multiple dosing regimens to establish a pharmacokinetic/pharmacodynamic (PK/PD) relationship. The strongest PK/PD correlation was observed between perforin inhibition in vivo and time that total plasma concentrations remained above 900 µM, which correlates to unbound concentrations similar to 3× the unbound in vitro IC90 of compound 1. This PK/PD relationship will inform future dosing strategies of BZS perforin inhibitors to maintain concentrations above 3× the unbound IC90 for as long as possible to maximize efficacy and enhance progression toward clinical evaluation.

10.
J Virol ; 96(5): e0155721, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019717

RESUMO

CD46 is a receptor for human herpesvirus 6A (HHV-6A) and is in some cells also important for infection with HHV-6B. CD46 has several isoforms of which the most commonly expressed can be distinguished by expression of a BC domain or a C domain in a serine-threonine-proline-rich (STP) extracellular region. Using a SupT1 CD46 CRISPR-Cas9 knockout model system reconstituted with specific CD46 isoforms, we demonstrated that HHV-6A infection was more efficient when BC isoforms were expressed as opposed to C isoforms, measured by higher levels of intracellular viral transcripts and recovery of more progeny virus. Although the B domain contains several O-glycosylations, mutations of Ser and Thr residues did not prevent infection with HHV-6A. The HHV-6A infection was blocked by inhibitors of clathrin-mediated endocytosis. In contrast, infection with HHV-6B was preferentially promoted by C isoforms mediating fusion-from-without, and this infection was less affected by inhibitors of clathrin-mediated endocytosis. Taken together, HHV-6A preferred BC isoforms, mediating endocytosis, whereas HHV-6B preferred C isoforms, mediating fusion-from-without. This demonstrates that the STP region of CD46 is important for regulating the mode of infection in SupT1 cells and suggests an epigenetic regulation of the host susceptibility to HHV-6A and HHV-6B infection. IMPORTANCE CD46 is the receptor used by human herpesvirus 6A (HHV-6A) during infection of T cells, but it is also involved in infection of certain T cells by HHV-6B. The gene for CD46 allows expression of several variants of CD46, known as isoforms, but whether the isoforms matter for infection of T cells is unknown. We used a genetic approach to delete CD46 from T cells and reconstituted them with separate isoforms to study them individually. We expressed the isoforms known as BC and C, which are distinguished by the potential inclusion of a B domain in the CD46 molecule. We demonstrate that HHV-6A prefers the BC isoform to infect T cells, and this occurs predominantly by clathrin-mediated endocytosis. In contrast, HHV-6B prefers the C isoform and infects predominantly by fusion-from-without. Thus, CD46 isoforms may affect susceptibility of T cells to infection with HHV-6A and HHV-6B.


Assuntos
Herpesvirus Humano 6 , Proteína Cofatora de Membrana , Linfócitos T , Internalização do Vírus , Células Cultivadas , Clatrina/metabolismo , Epigênese Genética , Deleção de Genes , Herpesvirus Humano 6/fisiologia , Humanos , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Linfócitos T/metabolismo , Linfócitos T/virologia
11.
Blood ; 139(12): 1833-1849, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35081253

RESUMO

Niemann-Pick disease type C1 (NP-C1) is a rare lysosomal storage disorder resulting from mutations in an endolysosomal cholesterol transporter, NPC1. Despite typically presenting with pronounced neurological manifestations, NP-C1 also resembles long-term congenital immunodeficiencies that arise from impairment of cytotoxic T lymphocyte (CTL) effector function. CTLs kill their targets through exocytosis of the contents of lysosome-like secretory cytotoxic granules (CGs) that store and ultimately release the essential pore-forming protein perforin and proapoptotic serine proteases, granzymes, into the synapse formed between the CTL and target cell. We discovered that NPC1 deficiency increases CG lipid burden, impairs autophagic flux through stalled trafficking of the transcription factor EB (TFEB), and dramatically reduces CTL cytotoxicity. Using a variety of immunological and cell biological techniques, we found that the cytotoxic defect arises specifically from impaired perforin pore formation. We demonstrated defects of CTL function of varying severity in patients with NP-C1, with the greatest losses of function associated with the most florid and/or earliest disease presentations. Remarkably, perforin function and CTL cytotoxicity were restored in vitro by promoting lipid clearance with therapeutic 2-hydroxypropyl-ß-cyclodextrin; however, restoration of autophagy through TFEB overexpression was ineffective. Overall, our study revealed that NPC1 deficiency has a deleterious impact on CTL (but not natural killer cell) cytotoxicity that, in the long term, may predispose patients with NP-C1 to atypical infections and impaired immune surveillance more generally.


Assuntos
Doença de Niemann-Pick Tipo A , Doença de Niemann-Pick Tipo C , Colesterol/metabolismo , Granzimas , Humanos , Doença de Niemann-Pick Tipo C/metabolismo , Perforina/genética , Linfócitos T Citotóxicos/metabolismo
12.
Sci Total Environ ; 818: 151783, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34801504

RESUMO

Environmental DNA (eDNA) metabarcoding (parallel sequencing of DNA/RNA for identification of whole communities within a targeted group) is revolutionizing the field of aquatic biomonitoring. To date, most metabarcoding studies aiming to assess the ecological status of aquatic ecosystems have focused on water eDNA and macroinvertebrate bulk samples. However, the eDNA metabarcoding has also been applied to soft sediment samples, mainly for assessing microbial or meiofaunal biota. Compared to classical methodologies based on manual sorting and morphological identification of benthic taxa, eDNA metabarcoding offers potentially important advantages for assessing the environmental quality of sediments. The methods and protocols utilized for sediment eDNA metabarcoding can vary considerably among studies, and standardization efforts are needed to improve their robustness, comparability and use within regulatory frameworks. Here, we review the available information on eDNA metabarcoding applied to sediment samples, with a focus on sampling, preservation, and DNA extraction steps. We discuss challenges specific to sediment eDNA analysis, including the variety of different sources and states of eDNA and its persistence in the sediment. This paper aims to identify good-practice strategies and facilitate method harmonization for routine use of sediment eDNA in future benthic monitoring.


Assuntos
DNA Ambiental , Biodiversidade , DNA/genética , Código de Barras de DNA Taxonômico , Ecossistema , Monitoramento Ambiental/métodos
13.
Cytometry A ; 101(4): 298-310, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34842347

RESUMO

Isolation of multiple cell populations from limited starting material and with minimal influence on cell homeostasis and viability are common requirements in both basic and clinical research. Fluorescence-activated cell sorting (FACS) is the most commonly applied sorting methodology with the majority of instruments being based on high pressure and electrostatic deflection. A more recent technology is based on a mechanical valve, operating at low pressure. In the present work we compared the two technologies by parallel sorting of small amounts of peripheral blood and umbilical cord blood on a BD FACSAria™ III and Miltenyi MACSQuant® Tyto® instrument. Concurrent manually performed magnetic-based cell sorting served as reference. Sorting metrics, including purity and viability, were compared. Expression of the heat-shock protein HSPA1A immediately post sorting and the proliferation potential of sorted T-cells in vitro was assessed. In general, there was little to distinguish the two fluorescence-activated technologies with regard to sorting metrics and HSPA1A expression. Variation, however, with respect to recovery and viability, was much smaller among Tyto sorted samples. The proliferation potential of Tyto-sorted T-cells was significantly higher compared to Aria-sorted T-cells, indicating that T-cells of the Tyto instrument are less perturbed. In summary, cell types of blood origin including CD34+ cells could effectively be isolated from small input amounts with either fluorescence-activated technology with little immediate effect on viability. The mechanical valve-based sorting by the Tyto instrument; however, appeared to perturb the cells to a lesser extent as judged by their proliferation potential.


Assuntos
Sangue Fetal , Separação Celular/métodos , Citometria de Fluxo/métodos , Eletricidade Estática
14.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504606

RESUMO

Tetraspanins are four-span transmembrane proteins that organize the membrane by forming tetraspanin-enriched microdomains. These have been shown to be important for virus entry. The human herpesvirus (HHV)-6A receptor CD46 is known to form complexes with the tetraspanin CD9 and ß1-integrins, however the significance of this for HHV-6A infection remains unexplored. Using a genetic approach, we demonstrate that knock out of CD46 abolishes binding to and infection of SupT1 cells by both HHV-6A and HHV-6B, establishing CD46 as a necessary receptor for productive infection of these cells. Knock out of CD9 in SupT1 cells had no effect on binding of either virus to the cell surface, but it reduced expression of immediate early transcripts to between 25-60% compared with the wild type cells. Although HHV-6B required CD46 for infection of SupT1, infection of Molt3 cells was independent of CD46 expression. Conversely, the absence of CD9 expression promoted infection of Molt3 cells with HHV-6B, indicating a negative role of CD9 for CD46-independent infection. Taken together, these data demonstrate that CD9 modulates infection with HHV-6A/B by promoting CD46-dependent infection and impairing CD46-independent infection. This also suggests that HHV-6A is strictly dependent on CD46 for entry, although other proteins, like CD9, may enhance the infection, whereas HHV-6B is more promiscuous and may use CD134, as demonstrated by others, CD46 in SupT1, and a novel yet unidentified receptor in Molt3 cells.Importance The mechanisms of entry of human herpesvirus (HHV)-6A and HHV-6B into host cells are of significance in order to develop novel drugs that may inhibit infection. To elucidate the contribution of the membrane proteins CD9 and CD46, we employed a genetic approach that eliminated these molecules from the host cell. This demonstrated that CD46 is critical for infection by HHV-6A, whereas infection by HHV-6B appeared to be more promiscuous. The infection of a T-cell line in the absence of CD46 and CD134 strongly suggest that an additional receptor for HHV-6B entry exists. Moreover, elimination of CD9 and subsequent reconstitution experiments demonstrated that CD9 promoted infection with HHV-6A and HHV-6B mediated by CD46, but inhibited infection with HHV-6B that occurred independent of CD46. Together, this demonstrated a CD46-dependent role of CD9 during infection with HHV-6A and HHV-6B and emphasized that HHV-6B may employ different entry mechanisms in various cells.

15.
Chem Commun (Camb) ; 57(5): 615-618, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33346255

RESUMO

We developed a superior class of light-activatable molecular beacons with photo-tethered loop regions. Two simple modifications and probe cyclisation prevent the molecular beacon from hybridising with the target RNA before light-activation. Full activity of the molecular beacon is elicited upon illumination with 365 nm light.

16.
Cancer Immunol Res ; 8(8): 1085-1098, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32444423

RESUMO

The adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) is known to facilitate caspase-1 activation, which is essential for innate host immunity via the formation of the inflammasome complex, a multiprotein structure responsible for processing IL1ß and IL18 into their active moieties. Here, we demonstrated that ASC-deficient CD8+ T cells failed to induce severe graft-versus-host disease (GVHD) and had impaired capacity for graft rejection and graft-versus-leukemia (GVL) activity. These effects were inflammasome independent because GVHD lethality was not altered in recipients of caspase-1/11-deficient T cells. We also demonstrated that ASC deficiency resulted in a decrease in cytolytic function, with a reduction in granzyme B secretion and CD107a expression by CD8+ T cells. Altogether, our findings highlight that ASC represents an attractive therapeutic target for improving outcomes of clinical transplantation.


Assuntos
Transplante de Medula Óssea/efeitos adversos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Inflamassomos/imunologia , Leucemia/terapia , Linfócitos T Citotóxicos/imunologia , Animais , Apoptose , Caspase 1/metabolismo , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Inflamassomos/metabolismo , Leucemia/imunologia , Leucemia/patologia , Camundongos , Camundongos Endogâmicos BALB C
17.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140457, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32473350

RESUMO

We investigated the molecular basis for the remarkably different survival outcomes of mice expressing different alloforms of the pro-apoptotic serine protease granzyme B to mouse cytomegalovirus infection. Whereas C57BL/6 mice homozygous for granzyme BP (GzmBP/P) raise cytotoxic T lymphocytes that efficiently kill infected cells, those of C57BL/6 mice congenic for the outbred allele (GzmBW/W) fail to kill MCMV-infected cells and died from uncontrolled hepatocyte infection and acute liver failure. We identified subtle differences in how GzmBP and GzmBW activate cell death signalling - both alloforms predominantly activated pro-caspases directly, and cleaved pro-apoptotic Bid poorly. Consequently, neither alloform initiated mitochondrial outer membrane permeabilization, or was blocked by Bcl-2, Bcl-XL or co-expression of MCMV proteins M38.5/M41.1, which together stabilize mitochondria by sequestering Bak/Bax. Remarkably, mass spectrometric analysis of proteins from MCMV-infected primary mouse embryonic fibroblasts identified 13 cleavage sites in nine viral proteins (M18, M25, M28, M45, M80, M98, M102, M155, M164) that were cleaved >20-fold more efficiently by either GzmBP or GzmBW. Notably, M18, M28, M45, M80, M98, M102 and M164 were cleaved 20- >100-fold more efficiently by GzmBW, and so, would persist in infected cells targeted by CTLs from GzmBP/P mice. Conversely, M155 was cleaved >100-fold more efficiently by GzmBP, and would persist in cells targeted by CTLs of GzmBW/W mice. M25 was cleaved efficiently by both proteases, but at different sites. We conclude that different susceptibility to MCMV does not result from skewed endogenous cell death pathways, but rather, to as yet uncharacterised MCMV-intrinsic pathways that ultimately inhibit granzyme B-induced cell death.


Assuntos
Granzimas/química , Granzimas/metabolismo , Muromegalovirus/imunologia , Peptídeos/metabolismo , Animais , Apoptose , Caspases/metabolismo , Morte Celular , Linhagem Celular , Modelos Animais de Doenças , Feminino , Granzimas/genética , Infecções por Herpesviridae/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Peptídeos/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Especificidade por Substrato , Linfócitos T Citotóxicos/imunologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Proteína bcl-X/metabolismo
18.
Cell Syst ; 9(5): 417-421, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31677972

RESUMO

As more digital resources are produced by the research community, it is becoming increasingly important to harmonize and organize them for synergistic utilization. The findable, accessible, interoperable, and reusable (FAIR) guiding principles have prompted many stakeholders to consider strategies for tackling this challenge. The FAIRshake toolkit was developed to enable the establishment of community-driven FAIR metrics and rubrics paired with manual and automated FAIR assessments. FAIR assessments are visualized as an insignia that can be embedded within digital-resources-hosting websites. Using FAIRshake, a variety of biomedical digital resources were manually and automatically evaluated for their level of FAIRness.


Assuntos
Disseminação de Informação/métodos , Internet/tendências , Sistemas On-Line/normas , Recursos em Saúde/normas , Humanos
19.
Transpl Int ; 32(11): 1203-1215, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31225919

RESUMO

We have previously reported that ICOS-Ig expressed locally by a PIEC xenograft induces a perigraft cellular accumulation of CD4+ CD25+ Foxp3+ T cells and specific xenograft prolongation. In the present study we isolated and purified CD4+ CD25+ T cells from ICOS-Ig secreting PIEC grafts to examine their phenotype and mechanism of xenograft survival using knockout and mutant mice. CD4+ CD25+ T cells isolated from xenografts secreting ICOS-Ig were analysed by flow cytometry and gene expression by real-time PCR. Regulatory function was examined by suppression of xenogeneic or allogeneic primed CD4 T cells in vivo. Graft prolongation was shown to be dependent on a pre-existing Foxp3+ Treg, IL-10, perforin and granzyme B. CD4+ CD25+ Foxp3+ T cells isolated from xenografts secreting ICOS-Ig demonstrated a phenotype consistent with nTreg but with a higher expression of CD275 (ICOSL), expression of CD278 (ICOS) and MHC II and loss of CD73. Moreover, these cells were functional and specifically suppressed xenogeinic but not allogeneic primed T cells in vivo.


Assuntos
Linfócitos T CD4-Positivos/citologia , Sobrevivência de Enxerto , Xenoenxertos/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Animais , Apoptose , Linhagem Celular , Fatores de Transcrição Forkhead/metabolismo , Granzimas/metabolismo , Interleucina-10/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perforina/metabolismo , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
20.
J Biol Chem ; 294(1): 269-280, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30409907

RESUMO

The cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) syndrome is caused by the single mutation E818K of the α3-isoform of Na+,K+-ATPase. Here, using biochemical and electrophysiological approaches, we examined the functional characteristics of E818K, as well as of E818Q and E818A mutants. We found that these amino acid substitutions reduce the apparent Na+ affinity at the cytoplasmic-facing sites of the pump protein and that this effect is more pronounced for the lysine and glutamine substitutions (3-4-fold) than for the alanine substitution. The electrophysiological measurements indicated a more conspicuous, ∼30-fold reduction of apparent Na+ affinity for the extracellular-facing sites in the CAPOS mutant, which was related to an accelerated transition between the phosphoenzyme intermediates E1P and E2P. The apparent affinity for K+ activation of the ATPase activity was unaffected by these substitutions, suggesting that primarily the Na+-specific site III is affected. Furthermore, the apparent affinities for ATP and vanadate were WT-like in E818K, indicating a normal E1-E2 equilibrium of the dephosphoenzyme. Proton-leak currents were not increased in E818K. However, the CAPOS mutation caused a weaker voltage dependence of the pumping rate and a stronger inhibition by cytoplasmic K+ than the WT enzyme, which together with the reduced Na+ affinity of the cytoplasmic-facing sites precluded proper pump activation under physiological conditions. The functional deficiencies could be traced to the participation of Glu-818 in an intricate hydrogen-bonding/salt-bridge network, connecting it to key residues involved in Na+ interaction at site III.


Assuntos
Trifosfato de Adenosina/metabolismo , Ataxia Cerebelar/metabolismo , Deformidades Congênitas do Pé/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Potenciais da Membrana , Mutação de Sentido Incorreto , Atrofia Óptica/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/genética , Substituição de Aminoácidos , Animais , Ataxia Cerebelar/genética , Deformidades Congênitas do Pé/genética , Perda Auditiva Neurossensorial/genética , Humanos , Atrofia Óptica/genética , Domínios Proteicos , Reflexo Anormal/genética , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , Vanadatos/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...