Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-519032

RESUMO

The present study was designed to investigate the effects of a soluble ACE2 protein termed ACE2 618-DDC-ABD, bioengineered to have long duration of action and high binding affinity to SARS-CoV-2, when administered either intranasally (IN) or intraperitoneally (IP) and before or after SARS-CoV-2 inoculation. K18hACE2 mice permissive for SARS-CoV-2 infection were inoculated with 2x104 PFU wildtype SARS-CoV-2. In one protocol, ACE2 618-DDC-ABD was given either IN or IP, pre- and post-viral inoculation. In a second protocol, ACE2 618-DDC-ABD was given either IN, IP or IN+IP but only post-viral inoculation. In addition, A549 and Vero E6 cells were used to test neutralization of SARS-CoV-2 variants by ACE2 618-DDC-ABD at different concentrations. Survival by day 5 was 0% in infected untreated mice, and 40% in mice from the ACE2 618-DDC-ABD IP-pre treated group. By contrast, in the IN-pre group survival was 90%, histopathology of brain and kidney was essentially normal and markedly improved in the lungs. When ACE2 618-DDC-ABD was administered only post viral inoculation, survival was 30% in the IN+IP group, 20% in the IN and 0% in the IP group. Brain SARS-CoV-2 titers were high in all groups except for the IN-pre group where titers were undetectable in all mice. In cells permissive for SARS-CoV-2 infection, ACE2 618-DDC-ABD neutralized wildtype SARS-CoV-2 at high concentrations, whereas much lower concentrations neutralized omicron BA. 1. We conclude that ACE2 618-DDC-ABD provides much better survival and organ protection when administered intranasally than when given systemically or after viral inoculation and that lowering brain titers is a critical determinant of survival and organ protection.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474519

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available, or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed essential for viral replication. We examined the master UPR sensor IRE1 kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1 as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1 through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1 was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCESARS-CoV-2 is the third lethal respiratory coronavirus after MERS-CoV and SARS-CoV to emerge this century, causing millions of deaths world-wide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1 (IRE1) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1 kinase and RNase activities, SARS-CoV-2 only partially activates IRE1, promoting its kinase activity but not RNase activity. Based on IRE1-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1 RNase activation as a strategy to limit detection by the host immune system.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-445060

RESUMO

The SARS-CoV-2 virus has caused an unprecedented global crisis, and curtailing its spread requires an effective vaccine which elicits a diverse and robust immune response. We have previously shown that vaccines made of a polymeric glyco-adjuvant conjugated to an antigen were effective in triggering such a response in other disease models and hypothesized that the technology could be adapted to create an effective vaccine against SARS-CoV-2. The core of the vaccine platform is the copolymer p(Man-TLR7), composed of monomers with pendant mannose or a toll-like receptor 7 (TLR7) agonist. Thus, p(Man-TLR7) is designed to target relevant antigen-presenting cells (APCs) via mannose-binding receptors and then activate TLR7 upon endocytosis. The p(Man-TLR7) construct is amenable to conjugation to protein antigens such as the Spike protein of SARS-CoV-2, yielding Spike-p(Man-TLR7). Here, we demonstrate Spike-p(Man-TLR7) vaccination elicits robust antigen-specific cellular and humoral responses in mice. In adult and elderly wild-type mice, vaccination with Spike-p(Man-TLR7) generates high and long-lasting titers of anti-Spike IgGs, with neutralizing titers exceeding levels in convalescent human serum. Interestingly, adsorbing Spike-p(Man-TLR7) to the depot-forming adjuvant alum, amplified the broadly neutralizing humoral responses to levels matching those in mice vaccinated with formulations based off of clinically-approved adjuvants. Additionally, we observed an increase in germinal center B cells, antigen-specific antibody secreting cells, activated T follicular helper cells, and polyfunctional Th1-cytokine producing CD4+ and CD8+ T cells. We conclude that Spike-p(Man-TLR7) is an attractive, next-generation subunit vaccine candidate, capable of inducing durable and robust antibody and T cell responses.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-438884

RESUMO

A diverse portfolio of SARS-CoV-2 vaccine candidates is needed to combat the evolving COVID-19 pandemic. Here, we developed a subunit nanovaccine by conjugating SARS-CoV-2 Spike protein receptor binding domain (RBD) to the surface of oxidation-sensitive polymersomes. We evaluated the humoral and cellular responses of mice immunized with these surface-decorated polymersomes (RBDsurf) compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl lipid A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that multivalent surface display of Spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-432967

RESUMO

The rapid spread of COVID-19 underscores the need for new treatments. Here we report that cannabidiol (CBD), a compound produced by the cannabis plant, inhibits SARS-CoV-2 infection. CBD and its metabolite, 7-OH-CBD, but not congeneric cannabinoids, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after cellular infection, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD induces interferon expression and up-regulates its antiviral signaling pathway. A cohort of human patients previously taking CBD had significantly lower SARS-CoV-2 infection incidence of up to an order of magnitude relative to matched pairs or the general population. This study highlights CBD, and its active metabolite, 7-OH-CBD, as potential preventative agents and therapeutic treatments for SARS-CoV-2 at early stages of infection.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-407031

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19) with innate and adaptive immune response triggered in such patients by viral antigens. Both convalescent plasma and engineered high affinity human monoclonal antibodies have shown therapeutic potential to treat COVID-19. Whether additional antiviral soluble factors exist in peripheral blood remain understudied. Herein, we detected circulating exosomes that express the SARS-CoV-2 viral entry receptor angiotensin-converting enzyme 2 (ACE2) in plasma of both healthy donors and convalescent COVID-19 patients. We demonstrated that exosomal ACE2 competes with cellular ACE2 for neutralization of SARS-CoV-2 infection. ACE2-expressing (ACE2+) exosomes blocked the binding of the viral spike (S) protein RBD to ACE2+ cells in a dose dependent manner, which was 400- to 700-fold more potent than that of vesicle-free recombinant human ACE2 extracellular domain protein (rhACE2). As a consequence, exosomal ACE2 prevented SARS-CoV-2 pseudotype virus tethering and infection of human host cells at a 50-150 fold higher efficacy than rhACE2. A similar antiviral activity of exosomal ACE2 was further demonstrated to block wild-type live SARS-CoV-2 infection. Of note, depletion of ACE2+ exosomes from COVID-19 patient plasma impaired the ability to block SARS-CoV-2 RBD binding to host cells. Our data demonstrate that ACE2+ exosomes can serve as a decoy therapeutic and a possible innate antiviral mechanism to block SARS-CoV-2 infection.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-274639

RESUMO

There is an urgent need for anti-viral agents that treat SARS-CoV-2 infection. The shortest path to clinical use is repurposing of drugs that have an established safety profile in humans. Here, we first screened a library of 1,900 clinically safe drugs for inhibiting replication of OC43, a human beta-coronavirus that causes the common-cold and is a relative of SARS-CoV-2, and identified 108 effective drugs. We further evaluated the top 26 hits and determined their ability to inhibit SARS-CoV-2, as well as other pathogenic RNA viruses. 20 of the 26 drugs significantly inhibited SARS-CoV-2 replication in human lung cells (A549 epithelial cell line), with EC50 values ranging from 0.1 to 8 micromolar. We investigated the mechanism of action for these and found that masitinib, a drug originally developed as a tyrosine-kinase inhibitor for cancer treatment, strongly inhibited the activity of the SARS-CoV-2 main protease 3CLpro. X-ray crystallography revealed that masitinib directly binds to the active site of 3CLpro, thereby blocking its enzymatic activity. Mastinib also inhibited the related viral protease of picornaviruses and blocked picornaviruses replication. Thus, our results show that masitinib has broad anti-viral activity against two distinct beta-coronaviruses and multiple picornaviruses that cause human disease and is a strong candidate for clinical trials to treat SARS-CoV-2 infection.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-240192

RESUMO

The number of new cases world-wide for the COVID-19 disease is increasing dramatically, while efforts to contain Severe Acute Respiratory Syndrome Coronavirus 2 is producing varied results in different countries. There are three key SARS-CoV-2 enzymes potentially targetable with antivirals: papain-like protease (PLpro), main protease (Mpro), and RNA-dependent RNA polymerase. Of these, PLpro is an especially attractive target because it plays an essential role in several viral replication processes, including cleavage and maturation of viral polyproteins, assembly of the replicase-transcriptase complex (RTC), and disruption of host viral response machinery to facilitate viral proliferation and replication. Moreover, this enzyme is conserved across different coronaviruses and promising inhibitors have already been discovered for its SARS-CoV variant. Here we report a substantive body of structural, biochemical, and virus replication studies that identify several inhibitors of the enzyme from SARS-CoV-2 in both wild-type and mutant forms. These efforts include the first structures of wild-type PLpro, the active site C111S mutant, and their complexes with inhibitors, determined at 1.60-2.70 Angstroms. This collection of structures provides fundamental molecular and mechanistic insight to PLpro, and critically, illustrates details for inhibitors recognition and interactions. All presented compounds inhibit the peptidase activity of PLpro in vitro, and some molecules block SARS-CoV-2 replication in cell culture assays. These collated findings will accelerate further structure-based drug design efforts targeting PLpro, with the ultimate goal of identifying high-affinity inhibitors of clinical value for SARS-CoV-2.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-173872

RESUMO

ABSTRACTSARS-CoV-2 Nsp15 is a uridylate-specific endoribonuclease with C-terminal catalytic domain belonging to the EndoU family. It degrades the polyuridine extensions in (-) sense strand of viral RNA and some non-translated RNA on (+) sense strand. This activity seems to be responsible for the interference with the innate immune response and evasion of host pattern recognition. Nsp15 is highly conserved in coronaviruses suggesting that its activity is important for virus replication. Here we report first structures with bound nucleotides and show that SARS-CoV-2 Nsp15 specifically recognizes U in a pattern previously predicted for EndoU. In the presence of manganese ions, the enzyme cleaves unpaired RNAs. Inhibitors of Nsp15 have been reported but not actively pursued into therapeutics. The current COVID-19 pandemic brought to attention the repurposing of existing drugs and the rapid identification of new antiviral compounds. Tipiracil is an FDA approved drug that is used with trifluridine in the treatment of colorectal cancer. Here, we combine crystallography, biochemical and whole cell assays, and show that this compound inhibits SARS-CoV-2 Nsp15 and interacts with the uridine binding pocket of the enzyme’s active site, providing basis for the uracil scaffold-based drug development.Competing Interest StatementThe authors have declared no competing interest.View Full Text

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA