Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 44(2): 762-778, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250712

RESUMO

Segmenting deep brain structures from magnetic resonance images is important for patient diagnosis, surgical planning, and research. Most current state-of-the-art solutions follow a segmentation-by-registration approach, where subject magnetic resonance imaging (MRIs) are mapped to a template with well-defined segmentations. However, registration-based pipelines are time-consuming, thus, limiting their clinical use. This paper uses deep learning to provide a one-step, robust, and efficient deep brain segmentation solution directly in the native space. The method consists of a preprocessing step to conform all MRI images to the same orientation, followed by a convolutional neural network using the nnU-Net framework. We use a total of 14 datasets from both research and clinical collections. Of these, seven were used for training and validation and seven were retained for testing. We trained the network to segment 30 deep brain structures, as well as a brain mask, using labels generated from a registration-based approach. We evaluated the generalizability of the network by performing a leave-one-dataset-out cross-validation, and independent testing on unseen datasets. Furthermore, we assessed cross-domain transportability by evaluating the results separately on different domains. We achieved an average dice score similarity of 0.89 ± 0.04 on the test datasets when compared to the registration-based gold standard. On our test system, the computation time decreased from 43 min for a reference registration-based pipeline to 1.3 min. Our proposed method is fast, robust, and generalizes with high reliability. It can be extended to the segmentation of other brain structures. It is publicly available on GitHub, and as a pip package for convenient usage.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos
2.
Alzheimers Dement ; 19(2): 646-657, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35633518

RESUMO

INTRODUCTION: Volumetric and morphological changes in subcortical brain structures are present in persons with dementia, but it is unknown if these changes occur prior to diagnosis. METHODS: Between 2005 and 2016, 5522 Rotterdam Study participants (mean age: 64.4) underwent cerebral magnetic resonance imaging (MRI) and were followed for development of dementia until 2018. Volume and shape measures were obtained for seven subcortical structures. RESULTS: During 12 years of follow-up, 272 dementia cases occurred. Mean volumes of thalamus (hazard ratio [HR] per standard deviation [SD] decrease 1.94, 95% confidence interval [CI]: 1.55-2.43), amygdala (HR 1.66, 95% CI: 1.44-1.92), and hippocampus (HR 1.64, 95% CI: 1.43-1.88) were strongly associated with dementia risk. Associations for accumbens, pallidum, and caudate volumes were less pronounced. Shape analyses identified regional surface changes in the amygdala, limbic thalamus, and caudate. DISCUSSION: Structure of the amygdala, thalamus, hippocampus, and caudate is associated with risk of dementia in a large population-based cohort of older adults.


Assuntos
Encéfalo , Demência , Humanos , Idoso , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Demência/diagnóstico por imagem , Demência/epidemiologia , Demência/patologia
3.
Nat Protoc ; 14(3): 639-702, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787451

RESUMO

Constraint-based reconstruction and analysis (COBRA) provides a molecular mechanistic framework for integrative analysis of experimental molecular systems biology data and quantitative prediction of physicochemically and biochemically feasible phenotypic states. The COBRA Toolbox is a comprehensive desktop software suite of interoperable COBRA methods. It has found widespread application in biology, biomedicine, and biotechnology because its functions can be flexibly combined to implement tailored COBRA protocols for any biochemical network. This protocol is an update to the COBRA Toolbox v.1.0 and v.2.0. Version 3.0 includes new methods for quality-controlled reconstruction, modeling, topological analysis, strain and experimental design, and network visualization, as well as network integration of chemoinformatic, metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code integration also enables an expansion in COBRA application scope via high-precision, high-performance, and nonlinear numerical optimization solvers for multi-scale, multi-cellular, and reaction kinetic modeling, respectively. This protocol provides an overview of all these new features and can be adapted to generate and analyze constraint-based models in a wide variety of scenarios. The COBRA Toolbox v.3.0 provides an unparalleled depth of COBRA methods.


Assuntos
Modelos Biológicos , Software , Genoma , Redes e Vias Metabólicas , Biologia de Sistemas
4.
Parkinsonism Relat Disord ; 43: 27-32, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28684187

RESUMO

BACKGROUND: Parkinsonism is a common neurodegenerative syndrome in middle-aged and elderly persons. The etiology is multifactorial with a possible vascular contribution, but this has not been comprehensively studied. OBJECTIVE: To determine whether selected markers of subclinical vascular pathology are associated with the risk of all-cause parkinsonism in the general population. METHODS: We assessed a range of markers of subclinical vascular pathology (ankle-brachial index, carotid plaques and intima media thickness, retinal arteriolar and venular calibers) in 6199 persons from the population-based Rotterdam Study, who were free of parkinsonism and dementia at baseline. We followed these persons up till onset of parkinsonism, dementia, and death for 89,387 person-years until January 1, 2013. Hazard ratios (HRs) for all-cause parkinsonism and separately for Parkinson disease (PD) versus non-PD were estimated from competing risk regression models adjusting for potential confounders. RESULTS: During follow-up, we identified 211 cases of parkinsonism (110 had PD). None of the five markers of subclinical pathology was associated with all-cause parkinsonism. Only low ankle-brachial index was associated with a higher risk of non-PD parkinsonism (HR = 0.79, 95%CI: 0.68-0.92), but not with the risk of PD. CONCLUSION: We did not find a consistent pattern of associations between systemic vascular pathology markers with parkinsonism, suggesting that the potential involvement of vascular pathology is not prominent or needs further evaluation in studies with an even larger sample size.


Assuntos
Doença de Parkinson/epidemiologia , Transtornos Parkinsonianos/epidemiologia , Doenças Vasculares/epidemiologia , Idoso , Índice Tornozelo-Braço , Espessura Intima-Media Carotídea , Planejamento em Saúde Comunitária , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Vasos Retinianos/patologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...