Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203326

RESUMO

We report the results of synthesis of zinc selenide (ZnSe) nanocrystals into SiO2/Si track templates formed by irradiation with 200 MeV Xe ions up to a fluence of 107 ions/cm2. Zinc selenide nanocrystals were obtained by chemical deposition from the alkaline aqueous solution. Scanning electron microscopy, X-ray diffractometry, Raman and photoluminescence spectroscopy, and electrical measurements were used for characterization of synthesized ZnSe/SiO2nanoporous/Si nanocomposites. XRD data for as-deposited precipitates revealed the formation of ZnSe nanocrystals with cubic crystal structure, spatial syngony F-43m (216). According to non-empirical calculations using GGA-PBE and HSE06 functionals, ZnSe crystal is a direct-zone crystal with a minimum bandgap width of 2.36 eV and anisotropic electronic distribution. It was found that a thermal treatment of synthesized nanocomposites at 800 °C results in an increase in ZnSe nanocrystallites size as well as an increase in emission intensity of created precipitates in a broad UV-VIS spectra range. However, vacuum conditions of annealing still do not completely prevent the oxidation of zinc selenide, and a formation of hexagonal ZnO phase is registered in the annealed samples. The current-voltage characteristics of the synthesized nanocomposites proved to have n-type conductivity, as well as increased conductivity after annealing.

2.
ACS Omega ; 8(33): 30768-30775, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636914

RESUMO

Silicon nitride, silicon oxide, and silicon oxynitride thin films were deposited on the Si substrate by inductively coupled plasma chemical vapor deposition and annealed at 1100 °C for 3 min in an Ar environment. Silicon nitride and silicon oxide films deposited at ratios of the reactant flow rates of SiH4/N2 = 1.875 and SiH4/N2O = 3, respectively, were Si-rich, while Si excess for the oxynitride film (SiH4/N2/N2O = 3:2:2) was not found. Annealing resulted in a thickness decrease and structural transformation for SiOx and SiNx films. Nanocrystalline phases of Si as well as α- and ß-Si3N4 were found in the annealed silicon nitride film. Compared to oxide and nitride films, the oxynitride film is the least susceptible to change during annealing. The relationship between the structure, composition, and optical properties of the Si-based films has been revealed. It has been shown that the calculated optical parameters (refractive index, extinction coefficient) reflect structural peculiarities of the as-deposited and annealed films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA