Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36015668

RESUMO

An aerosol jet printing (AJP) printing head built on top of precise motion systems can provide positioning deviation down to 3 µm, printing areas as large as 20 cm × 20 cm × 30 cm, and five-axis freedom of movement. Typical uses of AJP are 2D printing on complex or flexible substrates, primarily for applications in printed electronics. Nearly all commercially available AJP inks for 2D printing are designed and optimized to reach desired electronic properties. In this work, we explore AJP for the 3D printing of free-standing pillar arrays. We utilize aryl epoxy photopolymer as ink coupled with a cross-linking "on the fly" technique. Pillar structures 550 µm in height and with a diameter of 50 µm were 3D printed. Pillar structures were characterized via scanning electron microscopy, where the morphology, number of printed layers and side effects of the AJP technique were investigated. Satellite droplets and over-spray seem to be unavoidable for structures smaller than 70 µm. Nevertheless, reactive ion etching (RIE) as a post-processing step can mitigate AJP side effects. AJP-RIE together with photopolymer-based ink can be promising for the 3D printing of microstructures, offering fast and maskless manufacturing without wet chemistry development and heat treatment post-processing.

2.
Opt Express ; 30(6): 8494-8509, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299301

RESUMO

This paper reports on the fabrication and characterization of an inverted Hartmann mask and its application for multi-contrast X-ray imaging of polymer composite material in a laboratory setup. Hartmann masks open new possibilities for high-speed X-ray imaging, obtaining orientation-independent information on internal structures without rotating the object. The mask was manufactured with deep X-ray lithography and gold electroplating on a low-absorbing polyimide substrate. Such an approach allows us to produce gratings with a small period and high aspect ratio, leading to a higher spatial resolution and extension towards higher X-ray energies. Tuning the manufacturing process, we achieved a homogeneous patterned area without supporting structures, thus avoiding losses on visibility. We tested mask performance in a laboratory setup with a conventional flat panel detector and assessed mask imaging capabilities using a tailored phantom sample of various sizes. We performed multi-modal X-ray imaging of epoxy matrix polymer composites reinforced with glass fibers and containing microcapsules filled with a healing agent. Hartmann masks made by X-ray lithography enabled fast-tracking of structural changes in low absorbing composite materials and of a self-healing mechanism triggered by mechanical stress.

3.
Polymers (Basel) ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35012231

RESUMO

Biodiesel production from first-generation feedstock has shown a strong correlation with the increase in deforestation and the necessity of larger areas for land farming. Recent estimation from the European Federation for Transport and Environment evidenced that since the 2000s decade, an area equal to the Netherlands was deforested to supply global biodiesel demand, mainly originating from first-generation feedstock. Nevertheless, biodiesel is renewable, and it can be a greener source of energy than petroleum. A promising approach to make biodiesel independent from large areas of farming is to shift as much as possible the biodiesel production chain to second and third generations of feedstock. The second generation presents three main advantages, where it does not compete with the food industry, its commercial value is negligible, or none, and its usage as feedstock for biodiesel production reduces the overall waste disposal. In this manuscript, we present an oligomeric catalyst designed to be multi-functional for second-generation feedstock transesterification reactions, mainly focusing our efforts to optimize the conversion of tallow fat and sauteing oil to FAME and FAEE, applying our innovative catalyst. Named as Oligocat, our catalyst acts as a Brønsted-Lowry acid catalyst, providing protons to the reaction medium, and at the same time, with the course of the reaction, it sequesters glycerol molecules from the medium and changes its physical phase during the transesterification reaction. With this set of properties, Oligocat presents a pseudo-homogenous behavior, reducing the purification and separation steps of the biodiesel process production. Reaction conditions were optimized applying a 42 factorial planning. The output parameter evaluated was the conversion rate of triacylglycerol to mono alkyl esters, measured through gel permeation chromatography (GPC). After the optimization studies, a conversion yield of 96.7 (±1.9) wt% was achieved, which allows classifying the obtained mono alkyl esters as biodiesel by ASTM D6751 or EN 14214:2003. After applying the catalyst in three reaction cycles, Oligocat still presented a conversion rate above 96.5 wt% and as well an excellent recovery rate.

4.
J Imaging ; 7(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34821852

RESUMO

We present the application of single-shot multicontrast X-ray imaging with an inverted Hartmann mask to the time-resolved in situ visualization of chemical reaction products. The real-time monitoring of an illustrative chemical reaction indicated the formation of the precipitate by the absorption, differential phase, and scattering contrast images obtained from a single projection. Through these contrast channels, the formation of the precipitate along the mixing line of the reagents, the border between the solid and the solution, and the presence of the scattering structures of 100-200 nm sizes were observed. The measurements were performed in a flexible and robust setup, which can be tailored to various imaging applications at different time scales.

5.
Polymers (Basel) ; 14(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012043

RESUMO

With the increase in global demand for biodiesel, first generation feedstock has drawn the attention of governmental institutions due to the correlation with large land farming areas. The second and third feedstock generations are greener feedstock sources, nevertheless, they require different catalytic conditions if compared with first generation feedstock. In this work, we present the synthesis and characterization of oligoesters matrices and their functionalization to act as a pseudo-homogeneous acid catalyst for biodiesel production, named Oligocat. The main advantage of Oligocat is given due to its reactional medium interaction. Initially, oligocat is a solid catalyst soluble in the alcoholic phase, acting as a homogeneous catalyst, providing better mass transfer of the catalytic groups to the reaction medium, and as the course of the reaction happens, Oligocat migrates to the glycerol phase, also providing the advantage of easy separation of the biodiesel. Oligocat was synthesized through polymerization of aromatic hydroxy acids, followed by a chemical functionalization applying the sulfonation technique. Characterization of the catalysts was carried out by infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). The synthesized oligomers presented 5357 g·mol-1 (Mw) and 3909 g·mol-1 (Mn), with a moderate thermal resistance of approximately 175 °C. By sulfonation reaction, it was possible to obtain a high content of sulphonic groups of nearly 70 mol%, which provided the catalytic activity to the oligomeric matrix. With the mentioned physical-chemical properties, Oligocat is chemically designed to convert second generation feedstock to biodiesel efficiently. Preliminary investigation using Oligocat for biodiesel production resulted in conversion rates higher than 96.5 wt.%.

6.
Polymers (Basel) ; 12(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066642

RESUMO

Photoresists (or photo-resins) are the main and most important raw material used for lithography techniques such as deep X-ray (DXRL), ultraviolet (UVL), deep-UV (DUVL), and extreme UV (EUVL). In previous work, we showed how complicated could be the synthesis of the resins used to produce photoresist. In this study, we follow up on the strategy of tuning deep and macro levels of properties to formulate photo-resins. They were developed from a primary basis, using epoxy resins, a solvent, and a photoinitiator in several concentrations. The formulations were evaluated initially by the UVL technique, using a squared pattern of 2.3 mm2. The most suitable compositions were then studied in a pattern structure varying from 50 down to 1 µm width, applying UVL and DUVL. The patterned structures were compared with the chemical composition of the photo-resins. Considering the deep level of properties, polydispersion, and epoxidation degree were evaluated. Regarding the macro level of properties, the concentration of photoinitiator was studied. Promising results have been achieved with the control of the deep and macro levels methodology. By means of UV lithography, it was possible to note, for a large feature size above 2.0 mm2, the formulations presented good quality structures with a broad range of epoxidation degrees and photoinitiator concentrations, respectively from 3 to 100% (mol·molpolymer-1) and from 10 to 40% (mol·molpolymer-1). For structures smaller than 50 µm width, the composition of the photo-resins may be restricted to a narrow range of values regarding the formulation. The results indicate that the polydispersion of the oligomers might be a significant property to control. There is a tendency to better outcome with a low polydispersity (resins P1 and P2). Regarding UV and deep-UV irradiation, the best results were achieved with UV. Nevertheless, for DUV, the sensitivity seems to be more intense, leading to well-defined structures with over-exposure effects.

7.
J Synchrotron Radiat ; 27(Pt 3): 788-795, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381782

RESUMO

Different approaches of 2D lens arrays as Shack-Hartmann sensors for hard X-rays are compared. For the first time, a combination of Shack-Hartmann sensors for hard X-rays (SHSX) with a super-resolution imaging approach to perform multi-contrast imaging is demonstrated. A diamond lens is employed as a well known test object. The interleaving approach has great potential to overcome the 2D lens array limitation given by the two-photon polymerization lithography. Finally, the radiation damage induced by continuous exposure of an SHSX prototype with a white beam was studied showing a good performance of several hours. The shape modification and influence in the final image quality are presented.

8.
Polymers (Basel) ; 11(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500104

RESUMO

One of the types of negative tone photoresists is composed of at least a catalyst, a solvent, and epoxy resin. This is the primary raw material for lithography technology. To ensure high-quality pattern transfer in the lithography process, it is crucial to control the properties of the photoresist. In this work, a set of resins based on Bisphenol-A were synthesized. The obtained resins have been characterized regarding the chain size and its derivative products. As a second step, an epoxidation reaction was performed and the epoxy groups were quantified. The profile of the resins, obtained by mass spectroscopy (ESI-µ-TOF-MS), showed that it is possible to tune the chain sizes of the polymers and their derivate by controlling the parameters of the polymerization reaction. Three profiles of resins were achieved in this study. Nuclear magnetic resonance (NMR) indicates an epoxidation in the range of 96%, when comparing the phenolic peak intensity before and after the reaction. Differential Scan Calorimetry (DSC) measurements confirmed the different oligomer profiles of resins, showing different glass transition temperatures.

9.
Opt Lett ; 44(9): 2306-2309, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042210

RESUMO

In this Letter, we present the application of the inverted Hartmann mask for time-resolved single-shot phase-contrast x-ray imaging. The inverted Hartmann mask is a periodic array of free-standing gold pillars. The array is manufactured by UV lithography and electroplating. Time-resolved measurements are performed for imaging of pulsed laser ablation in liquids using white-beam synchrotron radiation. The inverted Hartmann mask in combination with a single-shot imaging technique provides sufficient differential phase contrast even at very short exposure times. It can be effectively used for phase-contrast x-ray imaging of fast dynamic processes with temporal resolution on the millisecond scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...