Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Infect Control ; 52(2): 159-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37268019

RESUMO

BACKGROUND: A major concern among health care experts is a shortage of N95 filtering facepiece respirators during a pandemic. If the supply of N95 filtering facepiece respirators becomes limited, reusable elastomeric half-mask respirators (EHMRs) may be used to protect health care workers. The focus of this study was to evaluate the effects on the filter performance of wiping decontamination for EHMR P100 filter cartridges. METHODS: The filter cartridge exterior of EHMR Honeywell, Moldex, and Mine Safety Appliance (MSA) models was wiped using quaternary ammonium and sodium hypochlorite wipes. These filter cartridge properties were assessed including observational analysis and filter performance tests. These wiping and assessing procedures were repeated after each set of wiping cycles (50, 100, 150, 200, and 400 cycles) to determine the effects of wiping decontamination. RESULTS: For sodium hypochlorite wipes, Honeywell, Moldex, and MSA models passed the National Institute for Occupational Safety and Health (NIOSH) liquid particulate penetration criteria for all wiping cycles from 50 to 400 (penetrations<0.014%). For quaternary ammonium wipes, filter penetrations of Moldex failed (penetrations>0.03%) after 150 cycles, while the filter penetrations of Honeywell and MSA passed for all wiping cycles (penetrations ≤0.013%). CONCLUSIONS: Wiping decontamination methods using sodium hypochlorite and quaternary ammonium wipes could be considered promising decontamination candidates for Honeywell, Moldex, and MSA reuse, except for the wiping number selection for Moldex (<150 cycles) when using the quaternary ammonium wipe.


Assuntos
Compostos de Amônio , Dispositivos de Proteção Respiratória , Humanos , Hipoclorito de Sódio , Descontaminação/métodos , Filtração , Ventiladores Mecânicos
2.
Am J Infect Control ; 49(4): 416-423, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524450

RESUMO

BACKGROUND: A major concern among health care experts is a shortage of N95 filtering facepiece respirators (FFRs) during a pandemic. One option for mitigating an FFR shortage is to decontaminate and reuse the devices. The focus of this study was to develop a new evaluation technique based on 3 major decontamination requirements: (1) inactivating viruses, (2) not altering the respirator properties, and (3) not leaving any toxic byproduct on the FFR. METHODS: Hydrophilic and hydrophobic FFRs were contaminated with MS2 virus. In the solution-based deposition, the virus-containing liquid droplets were spiked directly onto FFRs, while in the vapor-based and aerosol-based depositions, the viral particles were loaded onto FFRs using a bio-aerosol testing system. Ultraviolet germicidal irradiation (UVGI) and moist heat (MH) decontamination methods were used for inactivation of viruses applied to FFRs. RESULTS: Both UVGI and MH methods inactivated viruses (>5-log reduction of MS2 virus; in 92% of both method experiments, the virus was reduced to levels below the detection limit), did not alter the respirator properties, and did not leave any toxic byproduct on the FFRs. CONCLUSIONS: Both UVGI and MH methods could be considered as promising decontamination candidates for inactivation of viruses for respirator reuse during shortages.


Assuntos
Reutilização de Equipamento , Dispositivos de Proteção Respiratória , Descontaminação , Humanos , Pandemias , Raios Ultravioleta , Ventiladores Mecânicos
3.
J Occup Environ Hyg ; 17(5): 231-242, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32243774

RESUMO

The aim of this study was to develop a new method to measure respirator protection factors for aerosol particles using portable instruments while workers conduct their normal work. The portable instruments, including a set of two handheld condensation particle counters (CPCs) and two portable aerosol mobility spectrometers (PAMSs), were evaluated with a set of two reference scanning mobility particle sizers (SMPSs). The portable instruments were mounted to a tactical load-bearing vest or backpack and worn by the test subject while conducting their simulated workplace activities. Simulated workplace protection factors (SWPFs) were measured using human subjects exposed to sodium chloride aerosols at three different steady state concentration levels: low (8x103 particles/cm3), medium (5x104 particles/cm3), and high (1x105 particles/cm3). Eight subjects were required to pass a quantitative fit test before beginning a SWPF test for the respirators. Each SWPF test was performed using a protocol of five exercises for 3 min each: (1) normal breathing while standing; (2) bending at the waist; (3) a simulated laboratory-vessel cleaning motion; (4) slow walking in place; and (5) deep breathing. Two instrument sets (one portable instrument {CPC or PAMS} and one reference SMPS for each set) were used to simultaneously measure the aerosol concentrations outside and inside the respirator. The SWPF was calculated as a ratio of the outside and inside particles. Generally, the overall SWPFs measured with the handheld CPCs had a relatively good agreement with those measured with the reference SMPSs, followed by the PAMSs. Under simulated workplace activities, all handheld CPCs, PAMSs, and the reference SMPSs showed a similar GM SWPF trend, and their GM SWPFs decreased when simulated workplace movements increased. This study demonstrated that the new design of mounting two handheld CPCs in the tactical load-bearing vest or mounting one PAMS unit in the backpack permitted subjects to wear it while performing the simulated workplace activities. The CPC shows potential for measuring SWPFs based on its light weight and lack of major instrument malfunctions.


Assuntos
Aerossóis/análise , Poluentes Ocupacionais do Ar/análise , Filtração/instrumentação , Exposição por Inalação/prevenção & controle , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Dispositivos de Proteção Respiratória/normas , Adulto , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Ann Work Expo Health ; 62(6): 711-720, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29788040

RESUMO

This study compared the performance of the following field portable aerosol instrument sets to performance of the reference Scanning Mobility Particle Sizer (SMPS): the handheld CPC-3007, the portable aerosol mobility spectrometer (PAMS), the NanoScan scanning mobility particle sizer (NanoScan SMPS) combined with an optical particle sizer (OPS). Tests were conducted with monodispersed and polydispersed aerosols. Monodispersed aerosols were controlled at the approximate concentration of 1 × 105 particles cm-3 and four monodispersed particle sizes of 30, 60, 100, and 300 nm were selected and classified for the monodispersed aerosol test, while three different steady-state concentration levels (low, medium, and high: ~8 × 103, 5 × 104, and 1 × 105 particles cm-3, respectively) were selected for the polydispersed aerosol test. For all four monodispersed aerosol sizes, particle concentrations measured with the NanoScan SMPS were within 13% of those measured with the reference SMPS. Particle concentrations measured with the PAMS were within 25% of those measured with the reference SMPS. Concentrations measured with the handheld condensation particle counter were within 30% of those measured with the reference SMPS. For the polydispersed aerosols, the particle sizes and concentrations measured with the NanoScan-OPS compared most favorably with those measured with the reference SMPS for three different concentration levels of low, medium, and high (concentration deviations ≤10% for all three concentration levels; deviations of particle size ≤4%). Although the particle-size comparability between the PAMS and the reference SMPS was quite reasonable with the deviations within 10%, the polydispersed particle concentrations measured with the PAMS were within 36% of those measured with the reference SMPS. The results of this evaluation will be useful for selecting a suitable portable device for our next workplace study phase of respiratory protection assessment. This study also provided the advantages and limitations of each individual portable instrument and therefore results from this study can be used by industrial hygienists and safety professionals, with appropriate caution, when selecting a suitable portable instrument for aerosol particle measurement in nanotechnology workplaces.


Assuntos
Poluentes Ocupacionais do Ar/análise , Nanopartículas/análise , Exposição Ocupacional/análise , Cloreto de Sódio/análise , Aerossóis/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula , Local de Trabalho
5.
Aerosol Sci Technol ; 50(10): 1044-1054, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28603336

RESUMO

The aim of this study was to apply a direct-reading aerosol instrument method and an elemental carbon (EC) analysis method to measure the mass-based penetration of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) through elastomeric half-mask respirators (EHRs) and filtering facepiece respirators (FFRs). For the direct-reading aerosol instrument method, two scanning mobility particle sizer/aerodynamic particle sizer systems were used to simultaneously determine the upstream (outside respirator) and downstream (inside respirator) test aerosols. For the EC analysis method, upstream and downstream CNTs were collected on filter cassettes and then analyzed using a thermal-optical technique. CNT mass penetrations were found in both methods to be within the associated efficiency requirements for each type and class of the respirator models that were tested. Generally, the penetrations of SWCNTs and MWCNTs had a similar trend with penetration being the highest for the N95 EHRs, followed by N95 FFRs, P100 EHRs, and P100 FFRs. This trend held true for both methods; however, the CNT penetration determined by the direct-reading aerosol instrument method (0.009-1.09% for SWCNTs and 0.005-0.21% for MWCNTs) was greater relative to the penetration values found through EC analysis method (0.007-0.69% for SWCNTs and 0.004-0.13% for MWCNTs). The results of this study illustrate considerations for how the methods can be used to evaluate penetration of morphologically complex materials through FFRs and EHRs.

6.
J Nanotechnol Mater Sci ; 2(2): 1-6, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26273701

RESUMO

This study compared the simulated workplace protection factors (SWPFs) between NIOSH-approved N95 respirators and P100 respirators, including two models of filtering facepiece respirator (FFR) and two models of elastomeric half-mask respirator (EHR), against sodium chloride particles (NaCl) in a range of 10 to 400 nm. Twenty-five human test subjects performed modified OSHA fit test exercises in a controlled laboratory environment with the N95 respirators (two FFR models and two EHR models) and the P100 respirators (two FFRs and two EHRs). Two Scanning Mobility Particle Sizers (SMPS) were used to measure aerosol concentrations (in the 10-400 nm size range) inside (Cin) and outside (Cout) of the respirator, simultaneously. SWPF was calculated as the ratio of Cout to Cin. The SWPF values obtained from the N95 respirators were then compared to those of the P100 respirators. SWPFs were found to be significantly different (P<0.05) between N95 and P100 class respirators. The 10th, 25th, 50th, 75th and 90th percentiles of the SWPFs for the N95 respirators were much lower than those for the P100 models. The N95 respirators had 5th percentiles of the SWPFs > 10. In contrast, the P100 class was able to generate 5th percentiles SWPFs > 100. No significant difference was found in the SWPFs when tested against nano-size (10 to 100 nm) and large-size (100 to 400 nm) particles. Overall, the findings suggest that the two FFRs and two EHRs with P100 class filters provide better performance than those with N95 filters against particles from 10 to 400 nm, supporting current OSHA and NIOSH recommendations.

7.
Ann Occup Hyg ; 59(8): 1012-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26180261

RESUMO

Filtering facepiece respirators (FFRs) and elastomeric half-mask respirators (EHRs) are commonly used by workers for protection against potentially hazardous particles, including engineered nanoparticles. The purpose of this study was to evaluate the performance of these types of respirators against 10-400 nm particles using human subjects exposed to NaCl aerosols under simulated workplace activities. Simulated workplace protection factors (SWPFs) were measured for eight combinations of respirator models (2 N95 FFRs, 2 P100 FFRs, 2 N95 EHRs, and 2 P100 EHRs) worn by 25 healthy test subjects (13 females and 12 males) with varying face sizes. Before beginning a SWPF test for a given respirator model, each subject had to pass a quantitative fit test. Each SWPF test was performed using a protocol of six exercises for 3 min each: (i) normal breathing, (ii) deep breathing, (iii) moving head side to side, (iv) moving head up and down, (v) bending at the waist, and (vi) a simulated laboratory-vessel cleaning motion. Two scanning mobility particle sizers were used simultaneously to measure the upstream (outside the respirator) and downstream (inside the respirator) test aerosol; SWPF was then calculated as a ratio of the upstream and downstream particle concentrations. In general, geometric mean SWPF (GM-SWPF) was highest for the P100 EHRs, followed by P100 FFRs, N95 EHRs, and N95 FFRs. This trend holds true for nanoparticles (10-100 nm), larger size particles (100-400 nm), and the 'all size' range (10-400 nm). All respirators provided better or similar performance levels for 10-100 nm particles as compared to larger 100-400 nm particles. This study found that class P100 respirators provided higher SWPFs compared to class N95 respirators (P < 0.05) for both FFR and EHR types. All respirators provided expected performance (i.e. fifth percentile SWPF > 10) against all particle size ranges tested.


Assuntos
Nanopartículas , Dispositivos de Proteção Respiratória/normas , Local de Trabalho , Adulto , Aerossóis/análise , Idoso , Poluentes Ocupacionais do Ar/análise , Desenho de Equipamento , Feminino , Filtração/instrumentação , Humanos , Exposição por Inalação/prevenção & controle , Masculino , Pessoa de Meia-Idade , National Institute for Occupational Safety and Health, U.S./normas , Exposição Ocupacional/prevenção & controle , Tamanho da Partícula , Estados Unidos
8.
Ann Occup Hyg ; 58(5): 646-56, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24802251

RESUMO

Recent studies suggest that a wide range of human health effects could result from exposure to carbon nanotubes (CNTs). A National Institute for Occupational Safety and Health survey of the carbonaceous nanomaterial industry found that 77% of the companies used respiratory protection, such as filtering facepiece respirators (FFRs). Despite CNT studies in some occupational settings being reported, the literature for mass-based penetration of CNTs through FFRs is lacking. The aim of this study was to conduct a quantitative study of single-walled CNT (SWCNT) and multiwalled CNT (MWCNT) penetration through FFRs. A CNT aerosol respirator testing system was used to generate charge-neutralized airborne SWCNTs and MWCNTs for this study. The size distribution was 20-10000 nm, with 99% of the particles between 25 and 2840 nm. Mass median diameters were 598 and 634 nm with geometric standard deviations of 1.34 and 1.48 for SWCNTs and MWCNTs, respectively. Upstream and downstream CNTs were collected simultaneously using closed-face 3.7-cm-diameter filter cassettes. These samples were subsequently analyzed for organic carbon and elemental carbon (EC), with EC as a measure of mass-based CNTs. The mass-based penetration of SWCNTs and MWCNTs through six FFR models at constant flow rates of 30 l min(-1) (LPM) was determined. Generally, the penetrations of SWCNTs and MWCNTs at 30 LPM had a similar trend and were highest for the N95 FFRs, followed by N99 and P100 FFRs. The mass-based penetration of MWCNTs through six FFR models at two constant flow rates of 30 and 85 LPM was also determined. The penetration of MWCNTs at 85 LPM was greater compared with the values of MWCNTs at 30 LPM.


Assuntos
Poluentes Ocupacionais do Ar/análise , Nanotubos de Carbono/análise , Dispositivos de Proteção Respiratória/normas , Desenho de Equipamento , Filtração/instrumentação , Humanos , Exposição por Inalação/análise , Tamanho da Partícula
9.
J Aerosol Sci ; 61: 50-59, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26166842

RESUMO

Carbon nanotubes (CNTs) are currently used in numerous industrial and biomedical applications. Recent studies suggest that workers may be at risk of adverse health effects if they are exposed to CNTs. A National Institute for Occupational Safety and Health (NIOSH) survey of the carbonaceous nanomaterial industry found that 77% of the companies used respiratory protection. Elastomeric half-mask respirators and filtering facepiece respirators (FFRs) are commonly used. Although numerous respirator filtration studies have been done with surrogate engineered nanoparticles, such as sodium chloride, penetration data from engineered nanoparticles such as CNTs are lacking. The aims of this study were to develop a new CNT aerosol respirator testing system and to determine multi-walled CNT (MWCNT) penetration through FFRs. A custom-designed CNT aerosol respirator testing system (CNT-ARTS) was developed which was capable of producing a sufficient amount of airborne MWCNTs for testing of high efficiency FFRs. The size distribution of airborne MWCNTs was 20-10,000 nm, with 99% of the particles between 25 and 2840 nm. The count median diameter (CMD) was 209 nm with a geometric standard deviation (GSD) of 1.98. This particle size range is similar to those found in some work environments (particles ≤6000 nm). The penetration of MWCNTs through six tested FFR models at two constant flow rates of 30 and 85 LPM was determined. Penetration at 85 LPM (0.58-2.04% for N95, 0.15-0.32% for N99, and 0.007-0.009% for P100 FFRs) was greater compared with the values at 30 LPM (0.28-1.79% for N95, 0.10-0.24% for N99, and 0.005-0.006% for P100 FFRs). The most penetrating particle size through all six tested FFR models was found to be in the range of 25-130 nm and 35-200 nm for the 30-LPM and 85-LPM flow rates, respectively.

10.
Appl Environ Microbiol ; 75(23): 7303-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19801477

RESUMO

The aim of this study was to develop a test system to evaluate the effectiveness of procedures for decontamination of respirators contaminated with viral droplets. MS2 coliphage was used as a surrogate for pathogenic viruses. A viral droplet test system was constructed, and the size distribution of viral droplets loaded directly onto respirators was characterized using an aerodynamic particle sizer. The sizes ranged from 0.5 to 15 mum, and the sizes of the majority of the droplets were the range from 0.74 to 3.5 mum. The results also showed that the droplet test system generated similar droplet concentrations (particle counts) at different respirator locations. The test system was validated by studying the relative efficiencies of decontamination of sodium hypochlorite (bleach) and UV irradiation with droplets containing MS2 virus on filtering facepiece respirators. It was hypothesized that more potent decontamination treatments would result in corresponding larger decreases in the number of viable viruses recovered from the respirators. Sodium hypochlorite doses of 2.75 to 5.50 mg/liter with a 10-min decontamination period resulted in approximately 3- to 4-log reductions in the level of MS2 coliphage. When higher sodium hypochlorite doses (> or =8.25 mg/liter) were used with the same contact time that was used for the dilute solutions containing 2.75 to 5.50 mg/liter, all MS2 was inactivated. For UV decontamination at a wavelength of 254 nm, an approximately 3-log reduction in the level of MS2 virus was achieved with dose of 4.32 J/cm(2) (3 h of contact time with a UV intensity of 0.4 mW/cm(2)), while with higher doses of UV irradiation (> or =7.20 J/cm(2); UV intensity, 0.4 mW/cm(2); contact times, > or =5 h), all MS2 was inactivated. These findings may lead to development of a standard method to test decontamination of respirators challenged by viral droplets.


Assuntos
Descontaminação/métodos , Descontaminação/normas , Desinfecção/métodos , Desinfecção/normas , Ventiladores Mecânicos/virologia , Desinfetantes/farmacologia , Levivirus/efeitos dos fármacos , Levivirus/isolamento & purificação , Levivirus/efeitos da radiação , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Hipoclorito de Sódio/farmacologia , Fatores de Tempo , Raios Ultravioleta , Ensaio de Placa Viral
11.
Plant Physiol ; 150(3): 1503-14, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19439573

RESUMO

Dehydrins (DHNs; late embryogenesis abundant D11 family) are a family of intrinsically unstructured plant proteins that accumulate in the late stages of seed development and in vegetative tissues subjected to water deficit, salinity, low temperature, or abscisic acid treatment. We demonstrated previously that maize (Zea mays) DHNs bind preferentially to anionic phospholipid vesicles; this binding is accompanied by an increase in alpha-helicity of the protein, and adoption of alpha-helicity can be induced by sodium dodecyl sulfate. All DHNs contain at least one "K-segment," a lysine-rich 15-amino acid consensus sequence. The K-segment is predicted to form a class A2 amphipathic alpha-helix, a structural element known to interact with membranes and proteins. Here, three K-segment deletion proteins of maize DHN1 were produced. Lipid vesicle-binding assays revealed that the K-segment is required for binding to anionic phospholipid vesicles, and adoption of alpha-helicity of the K-segment accounts for most of the conformational change of DHNs upon binding to anionic phospholipid vesicles or sodium dodecyl sulfate. The adoption of structure may help stabilize cellular components, including membranes, under stress conditions.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Plantas/química , Zea mays/metabolismo , Sequência de Aminoácidos , Sequência Consenso , Escherichia coli/genética , Lipossomos/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Estrutura Terciária de Proteína , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Dodecilsulfato de Sódio/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zea mays/ultraestrutura
12.
Arch Environ Contam Toxicol ; 57(1): 185-92, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19330475

RESUMO

The aim of this study was to assess the use of aldehyde indicator pads for detection of glutaraldehyde and alkaline glutaraldehyde permeation through chemical protective gloves under simulated in-use conditions. The quantitative analysis of glutaraldehyde permeation through a glove material was determined for Metricide, Wavicide, and 50% glutaraldehyde following a solvent-desorption process and gas chromatographic analysis. All glutaraldehyde solutions exhibited >99% adsorption (including both the glutaraldehyde oligomers of the reaction product and the excess glutaraldehyde) on the pads over the spiking range 0.05-5.0 microL. Breakthrough times for protective gloves were determined using the Thermo-Hand test method, and found to range from 76 to 150, from 170 to 230, and from 232 to 300 min for Metricide, Wavicide, and 50% glutaraldehyde, respectively. Glutaraldehyde recovery was calculated and ranged from 61 to 80% for all glutaraldehyde solutions. The mass of glutaraldehyde in these solutions at the time of breakthrough detection ranged from 17 to 18, from 18 to 19, and from 19 to 20 microg/cm(2) for Wavicide, 50% glutaraldehyde solution, and Metricide, respectively. Aldehyde indicator pads and the Thermo-Hand test method together should find utility in detecting, collecting, and quantitatively analyzing glutaraldehyde permeation samples through chemical protective gloves under simulated in-use conditions.


Assuntos
Luvas Protetoras , Glutaral/análise , Álcalis/análise , Indicadores e Reagentes/química , Permeabilidade
13.
Appl Environ Microbiol ; 75(6): 1500-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19139225

RESUMO

A chamber to apply aerosolized virus-containing particles to air-permeable substrates (coupons) was constructed and validated as part of a method to assess the virucidal efficacy of decontamination procedures for filtering facepiece respirators. Coliphage MS2 was used as a surrogate for pathogenic viruses for confirmation of the efficacy of the bioaerosol respirator test system. The distribution of virus applied onto and within the coupons was characterized, and the repeatability of applying a targeted virus load was examined. The average viable virus loaded onto 90 coupons over the course of 5 days was found to be 5.09 +/- 0.19 log(10) PFU/coupon (relative standard deviation, 4%). To determine the ability to differentiate the effectiveness of disinfecting procedures with different levels of performance, sodium hypochlorite and steam treatments were tested in experiments by varying the dose and time, respectively. The role of protective factors was assessed by aerosolizing the virus with various concentrations of the aerosol-generating medium. A sodium hypochlorite (bleach) concentration of 0.6% and steam treatments of 45 s and longer resulted in log reductions (>4 logs) which reached the detection limits for both levels of protective factors. Organic matter (ATCC medium 271) as a protective factor afforded some protection to the virus in the sodium hypochlorite experiments but was not a factor in the steam experiments. The evaluation of the bioaerosol respirator test system demonstrated a repeatable method for applying a targeted viral load onto respirator coupons and provided insight into the properties of aerosols that are of importance to the development of disinfection assays for air-permeable materials.


Assuntos
Descontaminação/métodos , Levivirus/isolamento & purificação , Ventiladores Mecânicos/virologia , Aerossóis , Desinfetantes/farmacologia , Temperatura Alta , Levivirus/efeitos dos fármacos , Levivirus/efeitos da radiação , Viabilidade Microbiana , Hipoclorito de Sódio/farmacologia
14.
Talanta ; 73(1): 87-94, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19071854

RESUMO

A colorimetric indicator was developed and a colorimetric indicator pad was fabricated for the rapid detection of aldehydes. The detection pad has two sides: an observation side on top and a barrier on the bottom. The top side contains a reagent which reacts directly with aldehydes to produce a color change, while the bottom side is coated with a double-sided plastic tape barrier to prevent the escape of chemicals. Sensitivity of the indicator pads was determined using the vapor sensitive ASTM F739 technique with the presence of the indicator. A significant indicator color change (yellow to red) occurred about 5 min before the infrared analyzer response of the ASTM method. The chemical principle and reaction characterization of the test are described. The stability and potential interferences of the indicator pad were also examined by directly spiking aldehydes and compounds with other functional groups, respectively, onto the indicator pads. The newly developed aldehyde indicator pad should find utility in detecting aldehydes in both liquid and vapor phases and in collecting aldehyde permeation through PPE for further study.

15.
J Occup Environ Hyg ; 1(12): 799-805, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15742709

RESUMO

The aim of this study was to assess the use of colorimetric indicator pads and the thermo-hand method for detection of inorganic/organic base permeation of chemical protective gloves under simulated in-use conditions. Breakthrough times for four types of gloves were determined based on the color change of pads and ranged from 3 to 10 min for butylamine, from 4 min to >4 hours for diisopropylamine, from 6 min to >4 hours for triethylamine, and >4 hours for sodium hydroxide. Quantification was performed for butylamine, diisopropylamine, and triethylamine by gas chromatography following solvent desorption. These chemicals exhibited >99% adsorption on the pads at spiking levels of 1.08-1.11:g for each base. The recovery for the system was calculated for each chemical, with results ranging from 50-74% (RSD < or = 5%) for these bases over the spiking range 0.22-1.11 microg. The quantitative mass of the bases on the pads at the time of breakthrough detection ranged from 118-121, 117-120, and 109-116 microg/cm2 for butylamine, diisopropylamine, and triethylamine, respectively. The thermo-hand test method and base indicators together should find utility in detecting, collecting, and quantitatively analyzing base permeation samples under simulated in-use conditions.


Assuntos
Cáusticos/química , Luvas Protetoras , Exposição Ocupacional , Butilaminas/química , Cromatografia Gasosa , Colorimetria , Etilaminas/química , Mãos , Humanos , Teste de Materiais , Permeabilidade , Propilaminas/química , Segurança , Temperatura
16.
AIHA J (Fairfax, Va) ; 64(6): 771-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14674803

RESUMO

The thermo-hand method was developed to evaluate a new indicator pad for acid permeation through chemical protective gloves under in-use conditions (controlled conditions for the hand's skin temperature, hand movements, and relative humidity inside gloves). An indicator pad was used to detect both organic and inorganic acid permeation through glove materials. Breakthrough times for five types of gloves were determined and found to range from 5 to 308 min for propionic acid, from 4 to 293 min for acrylic acid, and from 15 min to >6 hours for HCl. Quantification was performed for propionic and acrylic acids following solvent desorption and gas chromatography. Both acids exhibited >99% adsorption (including the volume of acid, which reacted with an indicator to contribute the color change) on the pads at a spiking level of 1.8 micro L for each acid. Acid recovery for the system was calculated for each acid, with results ranging from 52-72% (RSD < or =4.0%) for both acids over the spiking range 0.2-1.8 micro L. The quantitative mass of the acids on the pads at the time of breakthrough detection ranged from 253-276 and 270-296 micro g/cm(2) for propionic acid and acrylic acid, respectively. The thermo-hand method and a new acid indicator pad together should be useful in detecting, collecting, and quantitatively analyzing acid permeation samples in the workplace.


Assuntos
Ácidos/análise , Luvas Protetoras/normas , Humanos , Umidade , Teste de Materiais , Permeabilidade , Temperatura Cutânea , Temperatura , Fatores de Tempo , Local de Trabalho
17.
Analyst ; 127(1): 178-82, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11827389

RESUMO

A new acid indicator pad was developed for the detection of acid breakthrough of gloves and chemical protective clothing. The pad carries a reagent which responds to acid contaminant by producing a color change. The pad was used to detect both organic and inorganic acids permeating through glove materials using the modified ASTM F-739 and direct permeability testing procedures. Breakthrough times for each type of glove were determined, and found to range from 4 min to > 4 h for propionic acid, from 3 min to > 4 h for acrylic acid, and from 26 min to > 4 h for HCl. A quantification was performed for propionic and acrylic acids following solvent desorption and gas chromatography. Both acids exhibited > 99% adsorption [the acid and its reactivity (the acid reacted with an indicator to contribute the color change)] on the pads at a spiking level of 1.8 microL for each acid. Acid recovery during quantification was calculated for each acid, ranging from 52-72% (RSD < or = 4.0%) for both acids over the spiking range 0.2-1.8 microL. The quantitative mass of the acids on the pads at the time of breakthrough detection ranged from 260-282 and 270-296 microg cm(-2) for propionic acid and acrylic acid, respectively. The new colorimetric indicator pad should be useful in detecting and collecting acid permeation samples through gloves and chemical protective clothing in both laboratory and field studies, for quantitative analysis.


Assuntos
Ácidos , Luvas Protetoras , Saúde Ocupacional , Toxinas Biológicas , Falha de Equipamento , Indicadores e Reagentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA